22/03/23 20:31:52.71 Nl4goO46.net
斎藤毅著『線形代数の世界』
定義1.4.1
V を K 線形空間とする。 W が V の K 部分空間(subspace)であるとは、 W が V の部分集合であって、次の条件をみたすことである。
(1) W の任意の元 x, y に対し、 x + y も W の元である。
(2) K の任意の元 a と W の任意の元 x に対し、 a*x も W の元である。
(3) V の零元 0 は W の元である。
空集合は条件(1)と(2)をみたすが、(3)をみたさない。
-----------------------------------------------------------------------------------------------------
「{} の任意の元 x, y に対し、 x + y も {} の元である。」という文があったとします。
これだけ見ると、「+」って何?という話になると思います。
{} ⊂ V と考えると、
「{} の任意の元 x, y に対し、 x + y も {} の元である。」の「+」は V での加法演算のことなので、問題ないと思います。
空集合 {} は一つしかないわけですが、それを V の部分集合と考えると「{} の任意の元 x, y に対し、 x + y も {} の元である。」が意味をなしますが、
空集合 {} を {バナナ, りんご, いちど} の部分集合と考えると「{} の任意の元 x, y に対し、 x + y も {} の元である。」は意味をなしませんよね?
このあたりはどのように考えたら良いのでしょうか?