21/11/27 17:43:18.42 +s/Xiqgg.net
前スレの線形空間Vからその双対空間V*への基底に依存しない同型は存在しないことの証明についての質問なんですが, 結局
α:V->V*は基底に依存しない線形写像
<==>
∃M ∈ K^(n×n) ( (∀e,f: Vの基底 (α_e=α_f)) かつ (∃e: Vの基底 (α=α_e)) )
但し
α_e=(φ_e*)^(-1) . M . φ_e : V->V* (MをM倍写像:K^n->K^nと同一視)
φ_e: V -> K^n; Σ_i x_i e_i -> (x_i)
と捉えて良いんですかね? もしそうなら基底に依存しない同型αが存在すると仮定すると,
URLリンク(i.imgur.com)
が可換になって基底の取り換え行列Pの行列式が+/-1にならなければいけないので,
(f_i)=(2e_i)のような基底の取り換えを考えれば矛盾して証明が完了するんですが…