21/10/31 16:04:53.08 OPOZLzHw.net
>>760
>>「最小値原理 自然数からなる空でない集合は最小値をもつ」
>>これは、数学的帰納法と同等だと
>で、なぜ同等か、>>746読んで、今日初めて分かったんだろ?w
いや、前から何度も見ているんだが
よりよく分かったわ。ありがとw
>述語論理のドモルガンの法則と対偶の法則と背理法
そうだね
命題 P ⇒ Q で、下記ね
1) ⇒ Q を証明するのが良いか
2)¬ Q⇒¬ P (対偶)を証明するのが良いか
3) Q∧¬ P⇒φ(矛盾 or 空集合)(背理法)を証明するのが良いか
それらは利害得失があるよね
>誰も読まないコピペやめような
”誰も読まない”は
未証明だよwww
(参考)
URLリンク(ja.wikipedia.org)
論理包含(ろんりほうがん、含意(がんい)、内含、英: implication、IMP)は、第1命題が偽または第2命題が真のときに真となる論理演算である。条件文(じょうけんぶん、英: conditional)とほぼ同じものである。論理的帰結(英: logical consequence)や伴意(英: entailment)とは異なる物であり、論理的帰結の項目を参照。
2つの命題 P と Q に対する論理包含を P → Q などと書き、「P ならば Q」と読む。命題 P → Q に対し、P をその前件、Q をその後件などと呼ぶ。
URLリンク(upload.wikimedia.org)
P ⇒ Q のベン図による表現
(引用終り)
以上