Inter-universal geometry と ABC予想 (応援スレ) 60at MATH
Inter-universal geometry と ABC予想 (応援スレ) 60 - 暇つぶし2ch819:132人目の素数さん
21/10/31 01:02:22.18 sSnO3928.net
MaraPapiyasのペット的お友達のKingOfUniverseの
男性器のクローンを作り、これを用いて元来の男性器を残したままスポーン式人工膣を形成してやれば
性欲大魔王MaraPapiyas以上の性欲を誇る性欲ドレアムKingOfUniverseは老若男女不問で発情するだろう

820:132人目の素数さん
21/10/31 01:33:09.90 K/512aCb.net
>>731
お前は自分が自己愛性PDなのに気づかないの?

821:132人目の素数さん
21/10/31 05:07:00.68 sSnO3928.net
他者の落ち度は徹底非難責任詰問、自分の落ち度は2ちゃんねるだからオールOK
この自分の落ち度は過小評価し他者の落ち度は過大評価の一方
自分のゴミ山コピペは過大評価し他者の意見は過小評価
自己愛性人格障害に中る行為に他ならない。

822:132人目の素数さん
21/10/31 05:12:43.93 sSnO3928.net
「間違いだらけだったとして子供の目に入ろうが何しようが、ここは2ちゃんねる。便所の落書きだよ、責任クソくらえ」
「時期が来たら働く」
「うるせー指図するな」
境遇不満、待遇改善欲求、自己愛。
スリランカ式引き籠り更生措置か
首から下を海浜に埋めてやるか
してやらないとSetAは誇大自己が治らない。

823:132人目の素数さん
21/10/31 07:26:45.83 OPOZLzHw.net
>>733
>>733
>>>731
>お前は自分が自己愛性PDなのに気づかないの?
ID:K/512aCb氏
下記を見ると、夜中0時から3時まで、3投稿ね
「定義!」の基礎論廃人氏か
 >>731のおサルの珍説の肩を持つかね
「自然数の集合はdescending chain condition は満たすがascending chain condition は満たさない 」>>626
は、良い指摘だったと思ったが
なんか逆だったんかw
あのさー、「定義」は大事だよ
だけど、その定義を使って、脳内でロジックの演繹ができないと、それはまた問題でしょ?
で、珍説1(>>354より)「<上昇列 0<・・・<ω が有限列にしかなり得ない」とかさ
自然数の集合はdescending chain condition と、どう繋がるのよ?
おサルは、おそらくは、「<上昇列 0<・・・<ω が有限列にしかなり得ない」が、descending chain conditionと勘違いしているのでしょうね
でも、その勘違いは、もっと早く気付くべき
大学数学科で学び、修士でも学んだという
そういう人が、なんで間違いに気付けないのか? なんだかね。気づきのチャンスはいくらでもあったろうに
URLリンク(hissi.org)
数学 > 2021年10月31日 > K/512aCb
書き込み順位&時間帯一覧
3 位/19 ID中 Total 3
時間 0 1 2 3 4 5 6
書き 1 1 0 1 0 0 0
込み数
書き込んだスレッド一覧
132人目の素数さん
面白い問題おしえて~な 39問目
Inter-universal geometry と ABC予想 (応援スレ) 60
分からない問題はここに書いてね 470

824:132人目の素数さん
21/10/31 07:30:50.52 sSnO3928.net
自己流曲解は演繹と違うじゃろ餓鬼め

825:132人目の素数さん
21/10/31 07:36:16.83 +PpCGhCF.net
>>729
ふーん、でもそれ結局
「nの部分集合が空でないなら
 0を要素に持つか、あるnが存在して
 n未満を要素に持たず、nを要素として持つ」
を示す必要があるだろ? で、上記は
「nの部分集合が、0を要素に持たず
 n未満を要素として持たないとき、nも要素として持たないならば、
 いかなる自然数も要素としないから、空集合である」
という命題の対偶


826:なんだな ほら、やっぱり>>663って素直じゃん(ニヤリ) >>730 大したことではないな



827:132人目の素数さん
21/10/31 07:42:17.48 OPOZLzHw.net
>>732 >>734-735
ID:sSnO3928氏は、蕎麦屋さんか
深夜の5ch徘徊、ご苦労さん(下記)
いま、暫定1位だってw
普通に、0.99999…は1だけど
”0.99999…は1ではない”世界も、数学的には作れるだろうよ
例えば、有限小数の世界では、”0.99999…は1ではない”よね
だから、その、延々「むきになって」、エンドレスに議論できる精神が、なんだかね
と思う次第
このスレ? このスレは、IUT応援ですよ
で、アンチが突っかかってくるから、応答しているだけです
アンチって、数学的にちょっと”あれ”じゃね?と。それで、IUTの数学を評するレベルでないということが、明らかになる
URLリンク(hissi.org)
数学 > 2021年10月31日 > sSnO3928
書き込み順位&時間帯一覧
1 位/19 ID中 Total 6
時間 0 1 2 3 4 5 6 7
書き 3 1 0 0 0 2 0 0
込み数
書き込んだスレッド一覧
132人目の素数さん
   0.99999…は1ではない その23   
Inter-universal geometry と ABC予想 (応援スレ) 60
書き込みレス一覧
   0.99999…は1ではない その23   
730 :132人目の素数さん[sage]:2021/10/31(日) 00:27:01.19 ID:sSnO3928
>>725
理1だと?何で理1の人間なんかが0.999…≠1だなんて言ってるんだ?壇上で言ってみ?内申に響くから。
お前まさか0.999…の2進表記である0.111…の無限二色ハッケンブッシュゲーム表現LRRR…が1よりε(=1/ω)だけ少ない事と
勘違いしてないか?

828:132人目の素数さん
21/10/31 07:43:50.25 +PpCGhCF.net
>>736
>おサルは、おそらくは、
>「<上昇列 0<・・・<ω が有限列にしかなり得ない」が、
>descending chain conditionと勘違いしているのでしょうね
君、わかってないねえ
もし、0からωに至るascending chainで、ωの直前の項が存在するなら
その場合、descending chain にもなり、有限列となる
逆に、0からωに至るascending chainがdescending chainとなるのは
ωの直前の項が存在するときに限る
はい、お🐒の負け―w
大学1年の微分積分と線型代数で落ちこぼれた工学部の🐎🦌の負け―w
理学部数学科に大惨敗wwwwwww

829:132人目の素数さん
21/10/31 08:23:33.39 OPOZLzHw.net
>>740
(再録>>731
珍説1(>>354より)
「<上昇列 0<・・・<ω が有限列にしかなり得ない」
珍説2(>>363より)
「<上昇列 0<1<・・・ω という無限列があり得る」と
「<上昇列 0<1<・・・<ω が有限列にしかなり得ない」は
両立する
(引用終り)
晒し者継続中w

830:132人目の素数さん
21/10/31 08:37:53.96 OPOZLzHw.net
>>740-741
「定義! 定義!」ね
定義が、上滑りしてんだろうね
字づらだけで、自分の内心の数学観中に、キチンと消化された形で収まっていないんだろうね
昔、ε-δで、
「君たち高校の数学では、極限 lim を、だんだん近づくのように曖昧な説明で終わらせていたが、数学的に厳密ではない。
 ε-δこそが正しい数学なのだ~!」なんて言われた時代がありました
で、高校の数学時代の曖昧な”極限 lim 、だんだん近づく”は、有害みたく言われた
でも、ニュートンやライプニッツは、これで偉大な仕事をした
後、超準解析(ノンスタ)が、日本にも紹介されて、21世紀の今では
上記のような古い考えの人は少なくなった
21世紀の今では、数学ってもっと自由に考えていいんだって、
分かってきたんだよね、おそらくね
でも、「曖昧な”極限 lim 、だんだん近づく”は、有害みたく」思い込んだ人は、きっと悲惨になったと思う
多分、そういう人が、自分の内心の数学観を育てられずにいて、定義がキチンと消化された形で内心に収まっていないんだろうね

831:132人目の素数さん
21/10/31 08:38:36.36 +PpCGhCF.net
>>741
晒されてるのは、OPOZLzHwことお🐒、君だよキ・ミ
もし、0からωに至るascending chainで、ωの直前の項が存在するなら
その場合、ωから0に至るdescending chainにもなり、有限列となる
逆に、0からωに至るascending chainが、ωから0に至るdescending chainとなるのは
ωの直前の項が存在するときに限る
はい、お🐒の負け―w
大学1年の微分積分と線型代数で落ちこぼれた工学部の🐎🦌の負け―w
理学部数学科に大惨敗wwwwwww

832:132人目の素数さん
21/10/31 08:39:48.16 sSnO3928.net
>>739 > 例えば、有限小数の世界では、”0.99999…は1ではない”よね
            スポポポポポポーン!!!
      。     。
        。  。 。 。 ゚
       。  。゚。゜。 ゚。 。
      /  // / /
     ( Д ) Д)Д))
            スパパパパパパーン!!!!!!
         + ,,  *    +
   " +※" + ∴  * ※ *
    *  * +※ ゙* ※ * +
   +  "※ ∴ * + *  ∴ +
      * ※"+* ∵ ※ *"
     ( Д ) Д)Д))

833:132人目の素数さん
21/10/31 08:45:55.94 sSnO3928.net
有限小数の世界では0.999…999は有っても0.999…は存在しませんよーだ。
桁数不定有限小数と無限小数の記述の区別さえマトモに出来んとは、流石は便喰蟲の集合Aなだけは有るのう。

834:132人目の素数さん
21/10/31 08:52:32.30 +PpCGhCF.net
なんか、大学数学で落ちこぼれた🐒が
今日も悔しさ一杯でキャッキャと吠えてるw
>>742
ε-δが分からん奴がわけもわからず超準解析に救いを求めるようだが
箱入り無数目で無限列の決定番号が確率1で∞とか
無限シングルトンの存在とかが、
超準解析で正当化できると思ってるなら正真正銘の🐎🦌だねw
∞という「自然数」は存在しない まずそのことを認めよう
>自分の内心の数学観を育てられずにいて、
>定義がキチンと消化された形で内心に収まっていない
そんなキモチワルイ宗教的言辞を吐く前に
まず、ド・モルガンの法則と対偶の法則と背理法を理解しろよな
おまえ、そこから全然訓練できてないw
例えば、数学的帰納法
P(0)∧∀m.P(m)⇒P(s(m))⇒∀n.P(n)
(0でPが成立し、任意のmについて、mでPが成立するならs(m)でもPが成立するとき
 任意のnでPが成りたつ)
の対偶は
∃n.¬P(n)⇒¬P(0)∨∃m.(P(m)∧¬P(s(m))
(Pが成立しないnが存在する場合、0でPが成立しないか、
 mではPが成立するがs(m)ではPが整理しないようなmが存在する)
だぞ

835:132人目の素数さん
21/10/31 08:58:58.65 sSnO3928.net
>>742
> でも、「曖昧な”極限 lim 、だんだん近づく”は、有害みたく」思い込んだ人は、きっと悲惨になったと思う
            スポポポポポポーン!!!
      。     。
        。  。 。 。 ゚
       。  。゚。゜。 ゚。 。
      /  // / /
     ( Д ) Д)Д))
            スパパパパパパーン!!!!!!
         + ,,  *    +
   " +※" + ∴  * ※ *
    *  * +※ ゙* ※ * +
   +  "※ ∴ * + *  ∴ +
      * ※"+* ∵ ※ *"
     ( Д ) Д)Д))

836:132人目の素数さん
21/10/31 09:02:29.43 sSnO3928.net
>>742
だんだん近づく、は思考過程・議論過程の便宜のお話しであり別に本当に近付いてるわけじゃありゃしません

837:132人目の素数さん
21/10/31 09:21:56.72 +PpCGhCF.net
>>742
>極限 lim を、だんだん近づくのように
>曖昧な説明で終わらせていたが、
>数学的に厳密ではない。…
🐒でも調和級数って知ってるよなw
この有限和
σ_i=Σ(n 1~i)1/n
による数列を考えた場合、iが大きくなるごとに、σ_i+1-σ_iは0に近づく
このことを以て「だんだん近づく」と思ってると失敗する
調和級数は収束しないから
そういう意味で、収束条件は曖昧さなく明確に示される必要がある
>ε-δこそが正しい数学なのだ~!
この場合の収束条件としての、コーシー列の条件は
正確にはε-Nであるが広義のε-δといってもいいだろう

838:132人目の素数さん
21/10/31 09:38:49.65 bTMlKIzX.net
kingと猿石は知り合いなん?

839:132人目の素数さん
21/10/31 10:21:25.89 OPOZLzHw.net
>>750
>kingと猿石は知り合いなん?
レスありがとう
知り合いではないと思う
5chで出会って、類は友を呼ぶ状態では?
king氏は、10年くらい前に当時の2chにいて、当時の固定king氏の話をよく出すが、自分自身の固定は ”粋蕎 ◆C2UdlLHDRI”らしい(下記)
数学板にはだいぶ、ブランクがあって(らしい(本人の言))、再出没は数年前と思う
「蕎」で、”蕎麦屋”と猿石氏が呼ぶようになって、私も使わせてもらっている
(参考)
Inter universal geometry と ABC予想(応援スレ)58
スレリンク(math板:71番)
71 名前:粋蕎 ◆C2UdlLHDRI [sage] 投稿日:2021/08/02(月) 18:24:39.74 ID:0KgUonzg

840:132人目の素数さん
21/10/31 11:03:47.57 OPOZLzHw.net
>>745 >有限小数の世界では0.999…999は有っても0.999…は存在しませんよーだ。 >桁数不定有限小数と無限小数の記述の区別さえマトモに出来んとは、流石は便喰蟲の集合Aなだけは有るのう。 説明します まず、何度も引用しているが下記再録 https://ja.wikipedia.org/wiki/0.999... 0.999... 超実数 数 0.999… の標準的な定義は 0.9, 0.99, 0.999, … なる数列の極限であるが、それと異なる定義として例えばテレンス・タオが超極限と呼ぶ数列 0.9, 0.99, 0.999, … の超冪構成(英語版)に関する同値類 [(0.9, 0.99, 0.999, …)] は 1 より無限小だけ小さい イアン・スチュアートはこの解釈を、「0.999… は 1 よりも『ほんの少しだけ小さい』」という直観を厳密に正当化する「全く合理的な」方法として特徴づけた (引用終り) さて、その上で、上記を有限小数環で説明しよう(高等数学とはあんまり関係ないが) 1.有限小数環を構成するやり方はいくらでもあるが、分かり易く、多項式環から始める (参考:https://ja.wikipedia.org/wiki/%E5%A4%9A%E9%A0%85%E5%BC%8F%E7%92%B0 )  参考より ”注意すべき点として、多項式には項が有限個しかないこと -つまり十分大きな k(ここでは k > m)に関する係数 pk がすべて零であるということ- は、暗黙の了解である”とある 2.普通、係数はある体Kだが、いま都合上整数Zを係数とする  そして、Xに1/10=0.1を代入する。例えば、p3X^3+p2X2+p1X1+P0→p3*10^-3 +p2*10^-2+p1*10^-1+p0となる  定数項p0があるので、全ての整数を尽くす。また、有限小数を全て尽くすことも容易に分かる  環としての和と積で閉じていることも、同様  この有限小数環をZ[10^-1]とする 3.Z[10^-1]は、有理数Qから10進の循環小数(=無限小数)を除いた集合であることも、容易に分かる  よって、1/3=0.333・・・という循環小数は、K[10^-1]には含まれない 4.よって、3*(1/3)=3*0.333・・・=0.999・・・=1  は、Z[10^-1]の中では実現できないが、任意の精度の近似が可能  この結果は、他の数学の成果と何ら矛盾しない 5.矛盾するような感覚になるのは、おそらくは  古代の人類が、有理数Qの分数から数学を発展させて来た歴史的なものによるのだろう 以上



842:132人目の素数さん
21/10/31 11:05:52.95 OPOZLzHw.net
>>752 タイポ訂正
 よって、1/3=0.333・・・という循環小数は、K[10^-1]には含まれない
  ↓
 よって、1/3=0.333・・・という循環小数は、Z[10^-1]には含まれない

843:132人目の素数さん
21/10/31 11:36:26.47 OPOZLzHw.net
>>742
>もし、0からωに至るascending chainで、ωの直前の項が存在するなら
>その場合、ωから0に至るdescending chainにもなり、有限列となる
>逆に、0からωに至るascending chainが、ωから0に至るdescending chainとなるのは
>ωの直前の項が存在するときに限る
その説明は、珍説(再録>>731
珍説1(>>354より)
「<上昇列 0<・・・<ω が有限列にしかなり得ない」
珍説2(>>363より)
「<上昇列 0<1<・・・ω という無限列があり得る」と
「<上昇列 0<1<・・・<ω が有限列にしかなり得ない」は
両立する
(引用終り)
の救いとはならないよ
一月くらい晒し者の予定だったが、
一向にレベルアップの気配無く、
煮詰まってきた感もあるので
少しずつヒントを出していくよ
<ヒント> >>620より再録
URLリンク(encyclopediaofmath.org)
Encyclopedia of Mathematics
Ordinal number
transfinite number, ordinal
A transfinite sequence of type α, or an α-sequence, is a function φ defined on {β?β<α}.
If the values of this sequence are ordinal numbers, and if γ<β<α implies that φ(γ)<φ(β), then it is called an ascending sequence.
(引用終り)
以上
このヒントをもとに、
松坂和夫氏の「集合・位相入門」の関連箇所
を、もう一度読んでみな

844:132人目の素数さん
21/10/31 12:00:05.17 +PpCGhCF.net
>>754
"A transfinite sequence of type α, or an α-sequence, is a function φ defined on {β?β<α}.
If the values of this sequence are ordinal numbers, and if γ<β<α implies that φ(γ)<φ(β), then it is called an ascending sequence."
「α


845:型のtransfinite sequence(α-sequence)は{β|β<α}上で定義される関数φである。  この数列の値が序数であり、γ<β<αがφ(γ)<φ(β)を意味する場合、それは上昇列と呼ばれます。」 で? 君、「<ω」見える? ωの左の「<」見える? 見えるなら「<」の左に項がなければならないの、わかる? P.S. >>751 king=粋蕎 って言ってる? そうなの?



846:132人目の素数さん
21/10/31 12:26:30.65 OPOZLzHw.net
>>754 文字化け訂正
A transfinite sequence of type α, or an α-sequence, is a function φ defined on {β?β<α}.
 ↓
A transfinite sequence of type α, or an α-sequence, is a function φ defined on {β|β<α}.
>>755
>君、「<ω」見える? ωの左の「<」見える?
見えるよ、心眼を凝らせばね。そこは、
URLリンク(encyclopediaofmath.org)
これの冒頭にある
但し、後に”limit ordinal number”と説明されているとおり、前者は持たない
>見えるなら「<」の左に項がなければならないの、わかる?
その考えが、躓きの一つでしょ
>>>751 king=粋蕎 って言ってる? そうなの?
king=粋蕎 とは言っていない
粋蕎氏が、”king king”というので、>>750氏は粋蕎氏をkingと略式で呼んだのでしょう
10年くらい前の人で、いまは”king”と名乗る固定ハンドル名は居ないと思うよ(少なくとも見たことがない)
説明は>>751の通りです

847:132人目の素数さん
21/10/31 14:40:53.92 OPOZLzHw.net
>>738
ありがと
まず、下記をば
中野伸先生 学習院
「最小値原理 自然数からなる空でない集合は最小値をもつ」
これは、数学的帰納法と同等だと
(参考)
URLリンク(pc1.math.gakushuin.ac.jp)
「代数入門」(2016)の資料 中野伸研究室 学習院大学理学部数学科
URLリンク(pc1.math.gakushuin.ac.jp)
第3章 最小値原理と数学的帰納法
3.1 最小値原理
自然数は「ものを数えるための言葉」であり,‘個数’ を表す一方で ‘順序’ を表すとも考
えられる. ‘順序’ としての自然数がもつ重要な性質として,次の原理がある.
最小値原理 自然数からなる空でない集合は最小値をもつ.
この原理は【割り算の定理】(定理 2.1) の証明の根拠にもなっている

以上の議論により,「最小値原理」は「数学的帰納法の原理」と同等であり,一方がもう一
方よりもエライということはない. 片方を用いて証明できる命題はもう片方を使っても証
明できるはずであり,どっちかじゃないと証明できない命題は(原理的には)ないはずである.
つづく

848:132人目の素数さん
21/10/31 14:41:19.25 OPOZLzHw.net
>>757
つづき
URLリンク(ja.wikipedia.org)
学的帰納法(すうがくてききのうほう、英: mathematical induction)は証明の手法の一つ。自然数に関する命題 P(n) が全ての自然数 n に対して成り立つ事を証明するために、次のような手続きを行う[注 1]。
1.P(1) が成り立つ事を示す。
2.任意の自然数 k に対して、「P(k) ⇒ P(k + 1)」が成り立つ事を示す。
3. 1と2の議論から任意の自然数 n について P(n) が成り立つ事を結論づける。
自然数に関するペアノの公理の中に、ほぼ等価なものが含まれている。
同値な定式化
集合論の枠組みでは、数学的帰納法の原理を次のように表すことができる[3]。
自然数 N の部分集合 A が空でないとき、A に属する最小の自然数が存在する。
この原理からもともとの形の数学的帰納法が導かれることは,次のようにして示せる。
帰納法の仮定 1., 2. を満たす論理式 P(n) が与えられたとする。自然数の部分集合 A を A = { n ∈ N : ¬ P(n) } によって定める。
この A が空集合であるということを示したい。
そうでないと仮定すると、Aに属する最小の自然数 a を取ることができるが、P(0)は成り立っていることから a は0でない。
従って、ある自然数 b について a = b + 1となっているが、a は A に属する最小の自然数であったということ�


849:ゥら、b not∈ A であり、P(b) は成り立つことになる。 帰納法の仮定から P(a) も成り立つことになり、これは矛盾である。 逆に、「n 以下の任意の自然数 k について k not∈ A」という形の命題 P(n) を考えることで、数学的帰納法から上の原理を導くことができる。 A を自然数のある集合とし、A に属する最小の自然数が存在しないと仮定する。 もし P(0) が成り立たないと、0 が A に属する最小の自然数となって仮定に反するから、P(0) は成り立つ。 P(n) が成り立つとし、もし P(n + 1) が成り立たないとすると、n + 1 が A の最小の自然数となって仮定に反するから、P(n + 1) も成り立つ。 よって数学的帰納法により A は空となる。 (引用終り) 以上



850:132人目の素数さん
21/10/31 15:01:45.03 +PpCGhCF.net
>>756
>(ωは)”limit ordinal number”と説明されているとおり、前者は持たない
うん、ωはね
私がいっているのは、
「0からはじまりωでおわる<上昇列におけるωの前者」
別に<上昇列にω以下の全部の順序数が現れる必要ないんだけど
例えば、>>754のキミの引用を使えば
「φ(β)=ωで、βが後続順序数の場合」
って意味なんだけど分かってる?
で、φ(0)=0、γ<βのときφ(γ)<φ(β)であるなら、
そのようなβは(0でない)有限順序数、つまり自然数なんだけどな
>>見えるなら「<」の左に項がなければならないの、わかる?
>その考えが、躓きの一つでしょ
もし、<の左の項は、左側に現れる項全て、というのであれば、
キミが考える0からωまでの無限上昇列1つに対応する降下列は
無数にあるってことになるね
しかし、そのどれ1つをとってもその長さは自然数で表せるけど
いずれにしても、もし
「上昇列、即、降下列」
と思ってるなら、それが君の最大の躓きの石だよ
P.S
>king=粋蕎 とは言っていない
>粋蕎氏が、”king king”というので、
>750氏は粋蕎氏をkingと略式で呼んだのでしょう
なんか、その発想がアタマオカシイな
あんたが論理的に物事考えられない
アタマオカシイ人だってよくわかったわ

851:132人目の素数さん
21/10/31 15:07:16.68 +PpCGhCF.net
>>757-758
>「最小値原理 自然数からなる空でない集合は最小値をもつ」
>これは、数学的帰納法と同等だと
で、なぜ同等か、>>746読んで、今日初めて分かったんだろ?w
さすが、論理のロの字もわからん🐒だな
これで君がやるべきこと、わかったろ?
述語論理のドモルガンの法則と対偶の法則と背理法
この三つを押さえとけよな
あと何度も何度も何度も何度もいってるけど
誰も読まない💩コピペやめような
コピペしなくていいから、自分が読んで理解しろw

852:132人目の素数さん
21/10/31 15:30:27.36 OPOZLzHw.net
>>758 補足
1.>>663の「ではその定理を利用してNはdccを満たすがaccを満たさないの証明を完成して下さい」
 の証明で”>>655の解答書くと
もし、NがDCCでないとすると、無限降下列が存在しますが その場合、
「任意のn∈Nについて、nが無限降下列の項に入ってない」
といえるので矛盾します”について
>>674で、
”そもそも、>>654の「降鎖条件を満たすことと、整礎であること、
 つまり任意の空でない部分集合が極小元をもつことは同値である。
 これは極小条件 (minimal condition) とも呼ばれる。」
の証明があるならば
単に「(自然数の集合Nで)任意の空でない部分集合が極小元をもつ」
(自然数だから最小元を示せば可)
を言えば良いんじゃね?”
 と書いたけど、世間的には、やっぱ最小値原理
「(自然数の集合Nで)任意の空でない部分集合が最小値をもつ」だよね
 この証明が普通ですよね。この証明は、そこら中にある。同じことなんだがね
2.あと>>730
"トンガリさん
2017/5/17 2:18
AをNの空でない部分集合とする。
Aの補集合をBとする。
Aに最小元が存在しないと仮定する。
0∈Aならば0が最小元となってしまうので0∈B
{0,1,2,..,n}⊂Bと仮定する。
n+1∈Aならばn+1はAの最小元となってしまうのでn+1∈B
以上数学的帰納法によりB=N。よってA=Φとなり矛盾。"
つづく

853:132人目の素数さん
21/10/31 15:30:53.91 OPOZLzHw.net
>>761
つづき
 これ、Aの補集合をBを使っていて、分かり易い
補集合のワンステップを入れることで
直感的に分かりやすく
自然数Nから先のコンパクト化された N∪ω にもそのまま適用できる気がする(数学的には同じだろうが)
”N∪ω”でも、「任意の空でない部分集合が最小値をもつ」の証明に使える
数学的帰納法でなく、超限帰納法というべきかも知れないがね
(参考)
https://


854:ja.wikipedia.org/wiki/%E3%82%B3%E3%83%B3%E3%83%91%E3%82%AF%E3%83%88%E5%8C%96 コンパクト化 自然数全体(離散位相) N の一点コンパクト化は N に最大元 ω を付け加えた順序集合 N∪ω の順序位相と同相になる。 https://kotobank.jp/word/%E8%B6%85%E9%99%90%E5%B8%B0%E7%B4%8D%E6%B3%95-97776#:~:text=%E8%B6%85%E9%99%90%E5%B8%B0%E7%B4%8D%E6%B3%95%E3%81%A1%E3%82%87%E3%81%86,%E5%8C%96%E3%81%97%E3%81%9F%E3%82%82%E3%81%AE%E3%81%A7%E3%81%82%E3%82%8B%E3%80%82 ブリタニカ国際大百科事典 小項目事典「超限帰納法」の解説 順序数αで番号づけられた命題 P(α)について,ξ<αについて P (ξ) が成立すれば,P (ξ) を証明することによって P (α) を証明する方法。 自然数についての数学的帰納法を一般化したものである。 αで番号づけるために,選択公理 (→ツェルメロの公理 ) を使って整列集合をつくらなければならないが,超限帰納法を直接使わないで,選択公理またはそれと同値な補題を使って証明することのほうが多い。 (引用終り) 以上



855:132人目の素数さん
21/10/31 15:49:06.42 OPOZLzHw.net
>>759
>いずれにしても、もし
>「上昇列、即、降下列」
>と思ってるなら、それが君の最大の躓きの石だよ
なんだかね
それは、おれが言いたいことだよw
URLリンク(encyclopediaofmath.org)
が、読めてないね
”A transfinite sequence of type α, or an α-sequence, is a function φ defined on {β|β<α}.
If the values of this sequence are ordinal numbers, and if γ<β<α implies that φ(γ)<φ(β), then it is called an ascending sequence.”
をもう一度熟読しなよ
ヒントを出しているのに
晒し者継続状態かよ、おい
>>750氏は粋蕎氏をkingと略式で呼んだのでしょう
>なんか、その発想がアタマオカシイな
可笑しいと言われてもね
 >>750 ID:bTMlKIzX氏発言 ”kingと猿石は知り合いなん?”
という発言は、 >>747 ID:sSnO3928氏の絵を受けてだろうと推察したのだが
この絵は、粋蕎 ◆C2UdlLHDRIが盛んに投稿していたよね
そして、粋蕎氏は、king氏のことは語ったけど、自身がking氏だと語ったことはない
で、ID:bTMlKIzX氏は、”粋蕎 ◆C2UdlLHDRI”は頭に浮かんだろうが、変換が面倒で、kingで代用したと推察したんだ
実際、”king”と名乗る人は、数学板で見かけたことないのだしね

856:132人目の素数さん
21/10/31 15:50:37.05 1N4dgFU6.net
結論
無限シングルトンなんか矛盾なしに定義することはできませんでした
メデタシメデタシ

857:132人目の素数さん
21/10/31 16:04:53.08 OPOZLzHw.net
>>760
>>「最小値原理 自然数からなる空でない集合は最小値をもつ」
>>これは、数学的帰納法と同等だと
>で、なぜ同等か、>>746読んで、今日初めて分かったんだろ?w
いや、前から何度も見ているんだが
よりよく分かったわ。ありがとw
>述語論理のドモルガンの法則と対偶の法則と背理法
そうだね
命題 P ⇒ Q で、下記ね
1) ⇒ Q を証明するのが良いか
2)¬ Q⇒¬ P (対偶)を証明するのが良いか
3) Q∧¬ P⇒φ(矛盾 or 空集合)(背理法)を証明するのが良いか
それらは利害得失があるよね
>誰も読まないコピペやめような
”誰も読まない”は
未証明だよwww
(参考)
URLリンク(ja.wikipedia.org)
論理包含(ろんりほうがん、含意(がんい)、内含、英: implication、IMP)は、第1命題が偽または第2命題が真のときに真となる論理演算である。条件文(じょうけんぶん、英: conditional)とほぼ同じものである。論理的帰結(英: logical consequence)や伴意(英: entailment)とは異なる物であり、論理的帰結の項目を参照。
2つの命題 P と Q に対する論理包含を P → Q などと書き、「P ならば Q」と読む。命題 P → Q に対し、P をその前件、Q をその後件などと呼ぶ。
URLリンク(upload.wikimedia.org)
P ⇒ Q のベン図による表現
(引用終り)
以上

858:132人目の素数さん
21/10/31 16:10:15.42 sSnO3928.net
>>751
40歳自動車企業勤務の儂が理研勤務のking42歳なわけないじゃろバカもん。
見当識もレベル0じゃ普段から述べ


859:連ねとる人格評もやはり出任せじゃな、デマ。 流石に>>750も儂とkingを混同せんわ。うわー。まーたオドレは劣化説明こいたわけじゃな。 常日頃から劣化説明して恥ずかしくないんか?



860:132人目の素数さん
21/10/31 16:19:05.36 sSnO3928.net
>>750
猿石はkingについて白を切っとるが猿石が語る2006~2008年頃の数学板の話からして猿石はkingを知らない筈は無い。
あの当時の数学板の全スレが『gnik』と書かれればkingが『Reply:わたしをよんでないか?』とレスを返し、
あの当時の数学板の全スレが『king氏ね』と書かれればkingが『Reply:お前が先に死ね。』とレスを返し、
あの当時の数学板の全スレが『kingは国賊』と書かれればkingが『Reply:お前に何がわかるというのか?』とレスを返し、
といった時代だった。各質問スレにも過疎スレにも現れるくらいじゃった奴を猿石が知らん道理は無い。

861:132人目の素数さん
21/10/31 16:19:59.30 +PpCGhCF.net
>>761
なにグダグダと言い訳書いてんだw
>>730の証明って、>>663と同じじゃんw
そんなこともわからんの?困ったもんだね論理を知らん素人はw
>>762
(dccを満たす証明について)
>自然数Nから先のコンパクト化された N∪ω にもそのまま適用できる気がする
「気がする」じゃなくて自分で実際に証明してみ
「そのまま」(つまり、数学的帰納法のみを使う)では頓挫するから
ωを全く理解できていないってそこで痛感する筈
そういうことしないからいつまでも自惚れ野郎なんだよ
やってみ、失敗してみ、悶絶してみ それがキミの数学の始まりだから
>>763
>>もし「上昇列、即、降下列」と思ってるなら、
>>それが君の最大の躓きの石だよ
>なんだかね それは、おれが言いたいことだよ
キミにはそんなこといえないよ
「確率1で決定番号∞」とか「無限シングルトン」とか
トンデモ数学ばかり語ってる自惚れ素人のキミにはね
P.S.
> 750 ID:bTMlKIzX氏発言 ”kingと猿石は知り合いなん?”という発言は、
> 747 ID:sSnO3928氏の絵を受けてだろうと推察したのだが
その「推察」とやらが全然論理的でないただの「連想」なんだがね
キミにとっての論理って「連想」のことなの?
だったらキミは論理でもなんでもない💩を論理と誤解してるんだね
それじゃ死ぬまで数学は絶対理解できねえわ 保証するよ

862:132人目の素数さん
21/10/31 16:25:16.46 OPOZLzHw.net
>>764
>結論
>無限シングルトンなんか矛盾なしに定義することはできませんでした
それ、未証明だよ
いやね、自分で定義して、突っ込まれるより
だれかが、”できません”というのを、ツッコム方が楽だよね
例えば、無限シングルトンの元が問題だという批判
対して、>>713に示したように
(引用開始)
URLリンク(en.wikipedia.org)
Axiom of infinity
4 = {0,1,2,3} = { {}, {{}}, { {}, {{}} }, { {}, {{}}, {{}, {{}}} } }.
A consequence of this definition is that every natural number is equal to the set of all preceding natural numbers. The count of elements in each set, at the top level, is the same as the represented natural number, and the nesting depth of the most deeply nested empty set {}, including its nesting in the set that represents the number of which it is a part, is also equal to the natural number that the set represents.
(引用終り)
ノイマン構成の自然数で、深さ無限の集合Nができるよね
そして、N={0,1,2,・・・}で、{}を外して元を見ると
0,1,2,・・ だけど、これって、後ろは・・で無限の彼方状態だよね
これは許されるよね
で、4 = {0,1,2,3} = { {}, {{}}, { {}, {{}} }, { {}, {{}}, {{}, {{}}} } }
を使って、余計な要素を抜くと、{ { {{}}} } } とできる
同じように、ノイマン構成のNで余計な要素を抜くと
{・・{ { {{}}} } }・・} となって、{}を外して元を見ると
・・{ { {{}}} } }・・ だけど、これって、左右は・・で無限の彼方状態だよね
これも許されるよね、上記 0,1,2,・・ と同じだから

863:132人目の素数さん
21/10/31 16:32:


864:40.57 ID:+PpCGhCF.net



865:132人目の素数さん
21/10/31 16:38:33.92 OPOZLzHw.net
>>766-767
蕎麦屋さん、フォローありがとう
 >>763の後半も見てくれ
>>768
>>(dccを満たす証明について)
>>自然数Nから先のコンパクト化された N∪ω にもそのまま適用できる気がする
さすがに気付いてくれた? 珍説批判を兼ねていることに
N∪ω >>762 "自然数全体(離散位相) N の一点コンパクト化は N に最大元 ω を付け加えた順序集合 N∪ω の順序位相と同相になる"
から、dccを満たすよね。分かっているかい?w
>>>もし「上昇列、即、降下列」と思ってるなら、
>>>それが君の最大の躓きの石だよ
>>なんだかね それは、おれが言いたいことだよ
なんだかね
晒し者状態継続中かよ
時枝 箱入り無数目 とか「無限シングルトン」とかも

866:132人目の素数さん
21/10/31 16:49:12.80 sSnO3928.net
>>750
猿石はkingについて白を切っとるが猿石が語る2006~2008年頃の数学板の話からして猿石はkingを知らない筈は無い。
あの当時の数学板の全スレが『gnik』と書かれればkingが『Reply:わたしをよんでないか?』とレスを返し、
あの当時の数学板の全スレが『king氏ね』と書かれればkingが『Reply:お前が先に死ね。』とレスを返し、
あの当時の数学板の全スレが『kingは国賊』と書かれればkingが『Reply:お前に何がわかるというのか?』とレスを返し、
といった時代だった。各質問スレにも過疎スレにも現れるくらいじゃった奴を猿石が知らん道理は無い。

867:132人目の素数さん
21/10/31 16:54:46.65 OPOZLzHw.net
>>770
>>よりよく分かったわ。ありがと
ありがとね
最小値原理は、多分超限帰納法でも使えるんだわ
で、ノイマンが、正則性公理を置いた意図が、それだという(下記)
それが、今回よく分かったよ
お礼に、一つヒントを追加しておくが
>>771(dccを満たす証明について) は
無限列にしか意味ないよ
有限列なら、自明だから
珍説に対するヒントな
(参考)
URLリンク(en.wikipedia.org)
Axiom of regularity
However, regularity makes some properties of ordinals easier to prove; and it not only allows induction to be done on well-ordered sets but also on proper classes that are well-founded relational structures such as the lexicographical ordering on {(n,α )| n∈ ω ∧ α is an ordinal }
Given the other axioms of Zermelo?Fraenkel set theory, the axiom of regularity is equivalent to the axiom of induction. The axiom of induction tends to be used in place of the axiom of regularity in intuitionistic theories (ones that do not accept the law of the excluded middle), where the two axioms are not equivalent.
(引用終り)
以上

868:132人目の素数さん
21/10/31 17:00:08.70 sSnO3928.net
>>771
フォローじゃなかろうがダメ出しじゃろダメ出し
> 後半も見てくれ
バカの勘繰りは此の様に成されるんじゃのう、と思わされたわ。
流石は常日頃から儂と猿石を勘違いするほど見当識がゾンビなオドレの洞察じゃな、
ますます常日頃のコピペ貼り方針と感想のゴミっぷりが知れるというもの。
↓昨日これ貼ってたの、すぐに儂じゃと気付けバカもん
            スポポポポポポーン!!!
      。     。
        。  。 。 。 ゚
       。  。゚。゜。 ゚。 。
      /  // / /
     ( Д ) Д)Д))
            スパパパパパパーン!!!!!!
         + ,,  *    +
   " +※


869:" + ∴  * ※ *     *  * +※ ゙* ※ * +    +  "※ ∴ * + *  ∴ +       * ※"+* ∵ ※ *"      ( Д ) Д)Д))



870:132人目の素数さん
21/10/31 17:00:21.35 +PpCGhCF.net
>>769
> ノイマン構成の自然数で、深さ無限の集合Nができるよね
ああ
> そして、N={0,1,2,・・・}で、{}を外して元を見ると0,1,2,・・ だけど、
そうだね
> これって、後ろは・・で無限の彼方状態だよね これは許されるよね
何がどう「許される」といいたいのかわからんが
「無限の彼方状態」とかいう🐎🦌っぽい言い方じゃなく
「最大元がない」とズバリ言いきってくれるかな?
そこがキミの最初の穴だから
>で、4 = {0,1,2,3} = {{},{{}},{{},{{}}},{{},{{}},{{},{{}}}}} を使って、
>余計な要素を抜くと、{{{{}}}} とできる
「余計な要素」とかいう🐎🦌っぽい言い方じゃなく
「最大元以外の要素」とズバリ言いきってくれるかな?
そここそがキミの次の穴だから
>同じように、ノイマン構成のNで余計な要素を抜くと
>{・・{{{{}}}}}・・} となって、
もう、ここまで2つの穴を指摘したから
いくら🐎🦌のキミでも気づかざるを得ないだろうけど
Nについて「最大元以外の要素」といいきったその瞬間
キミは困惑した筈だ なぜならNには「最大元がない」から!
つまりキミはありもしない架空の要素を勝手に妄想してたってことw
>{}を外して元を見ると・・{{{{}}}}}・・ だけど、
>これって、左右は・・で無限の彼方状態だよね
>これも許されるよね、
許されないよ 集合としては
一番外側の{}がないからね
集合の外延表現は、元の羅列を{}でくくったもの 覚えとけw
>上記 0,1,2,・・ と同じだから
全然違うよ
最大元の有無は絶対的な違いだってことに気づこうな
自惚れ素人のお🐒さんよwwwwwww
P.S.
>>771
>N∪ω "自然数全体(離散位相) N の一点コンパクト化は
>N に最大元 ω を付け加えた順序集合 N∪ω の順序位相と同相になる"から、
>dccを満たすよね。分かっているかい?w
そもそも順序数はdccを満たすが何か?
で、それがなぜだか分かってるかい?w

871:132人目の素数さん
21/10/31 17:02:27.83 tFenjj0d.net
おれもたまに数学板は見てたが、kingとかキ〇ガイはノイズとしか
見てないんで、飛ばして読んでた。だから、居ないも同然
と認識してるひとがいたとしても不思議じゃない。

872:132人目の素数さん
21/10/31 17:04:41.23 +PpCGhCF.net
>>767 >>772
Mara Papiyasは自分が弄れる相手にしか興味持たない
kingとかいう奴が哀れな素人やおっちゃんのようなトンデモド素人でないなら
何の関心を持たないに違いないから記憶にないとしてもおかしくはない

873:132人目の素数さん
21/10/31 17:11:58.12 +PpCGhCF.net
>>773
>最小値原理は、多分超限帰納法でも使えるんだわ
「多分」は要らない
で、>>762
>N∪ω にもそのまま適用できる気がする
はやってみたか?さっさとやれよ!
おまえがω+1の超限帰納法をどう書くか
採点してやっからwwwwwww
> 771(dccを満たす証明について) は
>無限列にしか意味ないよ
>有限列なら、自明だから
ん?言葉忘れたのか?🐒w
「無限順序数でしか意味ないよ
 有限順序数なら、自明だから」だろ?
言葉を正確に話せない🐒には数学は無理だぞ

874:132人目の素数さん
21/10/31 17:40:31.29 OPOZLzHw.net
>>778
(引用開始)
> 771(dccを満たす証明について) は
>無限列にしか意味ないよ
>有限列なら、自明だから
ん?言葉忘れたのか?w
「無限順序数でしか意味ないよ
 有限順序数なら、自明だから」だろ?
(引用終り)
無限列、有限列と書いたのも
ヒントのうちだよ

875:132人目の素数さん
21/10/31 18:00:25.59 +PpCGhCF.net
>>779
>ヒントのうちだよ
 誤解のうちだよ だろ?
 いいかげん自分がなんもわかってないって気づこうな 🐒
そもそも超限帰納法を理解してたら
いかなる順序数の降下列も有限長であることは
「自明」なんだが

876:132人目の素数さん
21/10/31 18:20:17.44 BKaOdZRy.net
>>772
king時代は知ってるよ
でもその頃猿石を見掛けた記憶は無い気がする

877:132人目の素数さん
21/10/31 18:29:25.34 OPOZLzHw.net
>>780
 >>654より
"まず、集合Aについて、a_n∈Aとなる無限長の降鎖(a_n)n∈Nがあったら、"
 >>663より
”実は>>654の証明は
松坂和夫氏の「集合・位相入門」の第3章§3の問2
の解答をほぼそのまま書いてます”
上記”集合Aについて、a_n∈Aとなる無限長の降鎖(a_n)n∈N”は、松坂和夫氏からでしょ?
この定義を、理解しているかい

878:132人目の素数さん
21/10/31 18:43:17.69 +PpCGhCF.net
>>782
>”集合Aについて、a_n∈Aとなる無限長の降鎖(a_n)n∈N”は、松坂和夫氏からでしょ?
>この定義を、理解しているかい
貴�


879:lは口のきき方をしらないね ブッ●されるよ 「”無限長の降鎖(a_n)n∈N”は松坂和夫氏の「集合・位相入門」ではどう定義されてますか?」 って聞けないの?精神オカシイの? 「順序集合Aの元の列(a_n)n∈Nで、  a_1>a_2>…>a_n>…  となるものをAにおける降鎖という」 これが定義 わざわざ聞くほど突飛なものではないがな?



880:132人目の素数さん
21/10/31 20:04:39.48 OPOZLzHw.net
>>783
理解できてないね
定義と、質問の意図が
図星じゃんか、
質問の意図
では、さらに聞く
いま、一つの列があるとする
この列が、降鎖なのか、上昇列なのか、はたまたどちらでもないのか?
どうやって判断するんだ?
そこが、分かってないんだろうね
お主は

881:132人目の素数さん
21/10/31 21:13:15.58 +PpCGhCF.net
>>784
>いま、一つの列があるとする
>この列が、降鎖なのか、上昇列なのか、はたまたどちらでもないのか?
言葉知らんのか?
「降鎖なのか、昇鎖なのか」か
「降下列なのか、上昇列なのか」か
どっちかだろ
ちゃんぽんに書く貴様は正真正銘の馬鹿
降鎖なら降りる方向に次の項がある a_n > a_n+1
昇鎖ならのぼる方向に次の項がある a_n < a_n+1
つまる無限昇鎖 a_0<a_1<・・・a_ω はそのまま無限降鎖とはできない
なぜなら、a_ω=b_0 として b_0>b_1 としたくても a_ω-1 なんて存在しないから
>そこが、分かってないんだろうね お主は
分かってないのはおめえだよ 💩🐒

882:132人目の素数さん
21/10/31 21:55:33.11 K/512aCb.net
結局のところセタは公理が矛盾しててもいいと思ってるんやろ
公理が矛盾しててもいいと思ってる奴と議論する意味ないわな

883:132人目の素数さん
21/10/31 22:01:24.56 OPOZLzHw.net
>>663
思い出したので戻る
(引用開始)
 >>655 「ではその定理を利用してNはdccを満たすがaccを満たさないの証明を完成して下さい」
ついでに>>655の解答書くと
もし、NがDCCでないとすると、無限降下列が存在しますが その場合、
「任意のn∈Nについて、nが無限降下列の項に入ってない」
といえるので矛盾します
「」内を数学的帰納法で示します
まず、0は無限降下列に入ってません 
0より小さい自然数はないからそこで止まっちゃいますからね
(引用終り)
”0より小さい自然数はないからそこで止まっちゃいますからね”が
ちょっと甘いと思った
ここ、”止まっちゃいます”から ”無限降下列にならない”を示すことは、要証明事項であって
その根拠が、>>654の「降鎖条件を満たすことと、整礎であること、
 つまり任意の空でない部分集合が極小元をもつことは同値である。
 これは極小条件 (minimal condition) とも呼ばれる。」の証明だったはず
ここの記述が、ロジックがちょっと甘いと思った
だから、
「0は自然数全体の最小限であり、任意の部分集合においても、
 最小限であるから極小条件を満たす。
 よって、無限降下列は0を含んでは成らない」と書くべきだし
しかし、そもそも、極小条件の「降鎖条件を満たすことと、整礎であること、
つまり任意の空でない部分集合が極小元をもつことは同値である」を既に証明しているのだから
本来、最小値原理「自然数からなる空でない集合は最小値をもつ」>>757 を、まず証明すべきで
その後に、極小条件から、”Nはdccを満たす”というのが、一番素直な筋だと思うよ

884:132人目の素数さん
21/10/31 22:07:07.22 OPOZLzHw.net
>>785
そこまで分かっているなら、
おまえの珍説見直して見ろよ
珍説(再録>>731
珍説1(>>354より)
「<上昇列 0<・・・<ω が有限列にしかなり得ない」
珍説2(>>363より)
「<上昇列 0<1<・・・ω という無限列があり得る」と
「<上昇列 0<1<・・・<ω が有限列にしかなり得ない」は
両立する
(引用終り)
<上昇列 0<1<・・・ω なんだろ?
これを、松坂和夫の上昇列の定義に当てはめて見ろよ
無限列なんだろ?

885:132人目の素数さん
21/10/31 22:23:03.71 +PpCGhCF.net
>>787
>”0より小さい自然数はないからそこで止まっちゃいますからね”が
>ちょっと甘いと思った
🐎🦌
>「0は自然数全体の最小元であり、
> 任意の部分集合においても、最小元であるから極小条件を満たす。
> よって、無限降下列は0を含んでは成らない」と書くべきだし
そう書いたらダメでしょ 完全な誤りだからw
「0は任意の部分集合においても、最小元」が誤り
いっとくけど、空集合も部分集合、とかいうつまらん理由じゃないよ
0を含まない部分集合では、0は当該集合の最小元じゃないでしょ
っていうより根本的な理由からだよ
ロジックに基づけば以下のように書くのが正しい
「0は自然数全体の最小元である。
 よって、自然数の無限降下列が存在するなら、0を含まない」
>本来、最小値原理「自然数からなる空でない集合は最小値をもつ」
>を、まず証明すべきで その後に、極小条件から、
>”Nはdccを満たす”というのが、一番素直な筋
馬鹿ほどベキベキベキベキいうけど、それロジックと�


886:ヨ係ないね dccを満たさないとして数学的帰納法により矛盾を導くのも 数学的帰納法の対偶から最小値原理を示すのも 実は同じことだから、つまらんことで騒ぐ貴様が🐎🦌



887:132人目の素数さん
21/10/31 22:28:24.71 +PpCGhCF.net
>>788
><上昇列 0<1<・・・ω なんだろ?
>これを、松坂和夫の上昇列の定義に当てはめて見ろよ
>無限列なんだろ?
何ギャアギャアわめいてんだこの🐎🦌w
それ、松坂和夫の降下列(=降鎖)の定義に当てはめられるか?
当てはまらないだろ? おまえが間違ってるんだよ この落ちこぼれ🐒w
工学部とかいう「職業訓練専門学校」にしか行けなかった🐎🦌の貴様に
大学数学なんか到底無理だから綺麗さっぱり諦めろw

888:132人目の素数さん
21/10/31 23:10:44.70 OPOZLzHw.net
>>790
>><上昇列 0<1<・・・ω なんだろ?
>>これを、松坂和夫の上昇列の定義に当てはめて見ろよ
>>無限列なんだろ?
>それ、松坂和夫の降下列(=降鎖)の定義に当てはめられるか?
だから、降下列(=降鎖)、上昇列の定義(松坂和夫)
 >>783
「順序集合Aの元の列(a_n)n∈Nで、
 a_1>a_2>…>a_n>…
 となるものをAにおける降鎖という」
同様に
「順序集合Aの元の列(a_n)n∈Nで、
 a_1<a_2<…<a_n<…
 となるものをAにおける上昇列という」
だな
そして、”a_1<a_2<…<a_n<…”は、あくまで2項関係”<”が成り立つ意味であって
”<”を書いたらではないよね
例えば、”a_1,a_2,…,a_n,…”と略記したとしても、
上記の2項関係”<”が成り立つ列であれば、上昇列だよね
繰り返すが、”<”を書く書かないではなく、2項関係”<”が成り立つ列であれば、上昇列だ
その上で珍説2(>>363より)
「<上昇列 0<1<・・・ω という無限列があり得る」と
「<上昇列 0<1<・・・<ω が有限列にしかなり得ない」は
両立する
(引用終り)
これを見ると
”<”を書く書かないではなく、2項関係”<”が成り立つ列であれば、それは上昇列だったよね
あんた、自分で前段で、「<上昇列 0<1<・・・ω という無限列があり得る」というが
後段で、「<上昇列 0<1<・・・<ω が有限列にしかなり得ない」という
おかしいよね。自分でそれ分からないか? やれやれだな

889:132人目の素数さん
21/10/31 23:32:30.11 OPOZLzHw.net
>>789
>>「0は自然数全体の最小元であり、
>> 任意の部分集合においても、最小元であるから極小条件を満たす。
>> よって、無限降下列は0を含んでは成らない」と書くべきだし
>そう書いたらダメでしょ 完全な誤りだからw
>「0は任意の部分集合においても、最小元」が誤り
>いっとくけど、空集合も部分集合、とかいうつまらん理由じゃないよ
> 0を含まない部分集合では、0は当該集合の最小元じゃないでしょ
ああ、ありがと
じゃ、補正します
「0は自然数全体の最小元であり、
 任意の部分集合においても、最小元であるから極小条件を満たす。
 よって、無限降下列は0を含んでは成らない」と書くべきだし
 ↓
「0は自然数全体の最小元であり、
 問題の任意の部分集合においても、もし0を含めば、0が最小元であるから極小条件を満たす。
 よって、問題の無限降下列は0を含んでは成らない」と書くべきだし
”もし0を含めば”を追加しましたよ
それで良いよね

890:132人目の素数さん
21/11/01 01:35:45.90 xMKlm24x.net
>>777
ダウト。kingは質問スレに挙がった統計に関する質問に誤って答えて
悪びれもせず開き直った態度を続けた事で弄られる様に成った果てに
「人の脳を読む能力を悪用する奴を潰せ。」とオカルトな事を言い始めて以来、魔羅パピヤスはkingを一層、弄り始めた。

891:132人目の素数さん
21/11/01 06:16:00.32 S5VLTjgn.net
横レスだが
>>791
>前段で、「<上昇列 0<1<・・・ω という無限列があり得る」というが
>後段で、「<上昇列 0<1<・・・<ω が有限列にしかなり得ない」という
>おかしいよね。
別におかしくはないんじゃね?
まず、
<上昇列 0<1<・・・ω と
<上昇列 0<1<・・・<ω は
異なる列ね
(注:別にωの左側にω未満の全ての順序数が現れる必要はない)

<上昇列 0<1<・・・ω ではωの前項は存在しないが
<上昇列 0<1<・・・<ω ではωの前項が存在する
したがって
<上昇列 0<1<・・・ω はそのまま降下列とはならないが
<上昇列 0<1<・・・<ω はそのまま降下列となる
それだけじゃね?わかんないか?やれやれ

892:132人目の素数さん
21/11/01 06:24:25.92 S5VLTjgn.net
横レスだが
>>792
>「0は自然数全体の最小元であり、
> 問題の任意の部分集合においても、もし0を含めば、0が最小元であるから極小条件を満たす。
> よって、問題の無限降下列は0を含んでは成らない」
2行目要らないね
その次にくるのは
「もしn未満の自然数を自然数全体の集合から取り除けば
 nが上記の集合の最小元となる
 よって、問題の無限降下列はnを含まない」
これで数学的帰納法により
「問題の無限降下列は任意の自然数を含まない」
といえる

893:132人目の素数さん
21/11/01 06:26:57.03 S5VLTjgn.net
横レスだが
>>793
>kingは質問スレに挙がった統計に関する質問に誤って答えて
それ、いつの話?
>魔羅パピヤスはkingを一層、弄り始めた。
その書き込み、具体的にリンクで示せる?

894:132人目の素数さん
21/11/01 06:29:02.30 S5VLTjgn.net
それにしても今度の選挙 維新 ジャン勝ちじゃん
維新嫌いのMaraPapiyasは寝込んでるよ、きっと
関西って右寄りなのかな?

895:132人目の素数さん
21/11/01 06:42:53.21 S5VLTjgn.net
今年はオリンピックと皇室の存在意義が問われた年だったと思うけど
自民党と資本主義の存在意義はまだ疑われてないみたいだね

896:132人目の素数さん
21/11/01 06:47:57.


897:52 ID:S5VLTjgn.net



898:132人目の素数さん
21/11/01 06:48:24.87 S5VLTjgn.net
また夜来るね

899:132人目の素数さん
21/11/01 07:32:19.65 0PUyxUhS.net
>>794
(引用開始)
まず、
<上昇列 0<1<・・・ω と
<上昇列 0<1<・・・<ω は
異なる列ね
(注:別にωの左側にω未満の全ての順序数が現れる必要はない)
それだけじゃね?わかんないか?やれやれ
(引用終り)
レスありがとね
しかし、わかんねーし、標準的な記法ではないよね
標準的な定義と記法は、松坂 >>791 とか、>>773 Axiom of regularity URLリンク(en.wikipedia.org)
とかじゃね?
それに、「現れる必要はない」と「現れてはいけない」とは、意味違う
>>795
(引用開始)
>「0は自然数全体の最小元であり、
> 問題の任意の部分集合においても、もし0を含めば、0が最小元であるから極小条件を満たす。
> よって、問題の無限降下列は0を含んでは成らない」
2行目要らないね
(引用終り)
いると思うよ
1.自然数Nの空でない部分集合Aを取って、その元を降順に並べて、列を作る
 但し0を含むから、下記になる
  >>783 降下列(=降鎖)の定義(松坂和夫)
「順序集合Aの元の列(a_n)n∈Nで、
 a_1>a_2>…>a_n>…
 となるものをAにおける降鎖という」
 を使って
 a_1>a_2>…>a_n>…> 0 となる
2.直感的には、a_1=n ∈N だから、
 列の長さは、n+1以下だ
3.しかし、数学的にはNは無限集合だから、
 nに上限がないので、有限長の主張としては、そこがちょっと弱点だ
4.よって、「a_1=n」を言わずに、最小元の存在だけで、列が有限長だと主張したい
 そのために、極小条件>>654を使うのが綺麗だってこと(極小条件に有限長が示されている)
(そもそも、出題は>>655「ではその定理(極小条件)を利用してNはdccを満たすがaccを満たさないの証明を完成して下さい」だしね)

900:132人目の素数さん
21/11/01 11:04:44.19 vxXoa7Zf.net
>>769 補足
(引用開始)
ノイマン構成の自然数で、深さ無限の集合Nができるよね
そして、N={0,1,2,・・・}で、{}を外して元を見ると
0,1,2,・・ だけど、これって、後ろは・・で無限の彼方状態だよね
これは許されるよね
で、4 = {0,1,2,3} = { {}, {{}}, { {}, {{}} }, { {}, {{}}, {{}, {{}}} } }
を使って、余計な要素を抜くと、{ { {{}}} } } とできる
同じように、ノイマン構成のNで余計な要素を抜くと
{・・{ { {{}}} } }・・} となって、{}を外して元を見ると
・・{ { {{}}} } }・・ だけど、これって、左右は・・で無限の彼方状態だよね
これも許されるよね、上記 0,1,2,・・ と同じだから
(引用終り)
・・{ { {{}}} } }・・ と類似の存在が、ノイマン構成の自然数集合Nで現れることを
背理法で示す
1.まず、・・{ { {{}}} } }・・ は、可算無限シングルトンの元です
2.さて、ノイマン構成の自然数集合N={0,1,2,・・・}の元として、上記1のような元が無くて
 あるn= { {}, {{}}, { {}, {{}} }, { {}, {{}}, {{}, {{}}} }・・・ }n
 (ここに }nは、空集合{}までの”nesting depth”>>769を示す )
 で終わったとすると
 {0,1,2,・・n}となり、Nは有限集合にしか ならないので、矛盾
3.よって、{ {}, {{}}, { {}, {{}} }, { {}, {{}}, {{}, {{}}} }・・・ }n ・・・
 の状態の元が存在しなければ、Nは無限集合たりえない
4.では、{ {}, {{}}, { {}, {{}} }, { {}, {{}}, {{}, {{}}} }・・・ }n ・・・は、集合なのだろうか?
 下記の正則性公理の説明”V=WFの仮定は全ての集合を0に通常の集合演算を施すことによって得られるものだけに制限することを主張している”
 を信じれば、答えはYes! (下記で特に”超限回繰り返し”の記述にご注目)
だから、類似の存在が許されるならば、・・{ { {{}}} } }・・ もありと思うよ
存在を否定したい人は、どうぞ証明を。それをツッツク方が楽だから(>>769 )
つづく

901:132人目の素数さん
21/11/01 11:05:27.26 vxXoa7Zf.net
>>802
つづき
(参考)
URLリンク(ja.wikipedia.org)
正則性公理
定義
空でない集合は必ず自分自身と交わらない要素を持つ。
以下の4つの主張はいずれも同値であり、どれを正則性の公理として採用しても差し支えない。
・V=WF
ここで、Vはフォン・ノイマン宇宙を指し、WFは0に冪集合の演算を有限回、あるいは超限回繰り返して得られる集合全体のクラスを指す。
ZF公理系の他の公理系から得られる種々の集合演算(対集合、和集合、冪集合) の結果としての集合は常にWF内に含まれるため、V=WFの仮定は全ての集合を0に通常の集合演算を施すことによって得られるものだけに制限することを主張している。
(引用終り)
以上

902:132人目の素数さん
21/11/01 11:15:22.12 GFaoa/dG.net
>>802
お前証明読めんやん?
お前に何度も何度も証明つけて説明したけど全部わからんかったんやろ?
お前に数学理解できる知能ないって
人格障害でその事認識できんみたいやけど

903:132人目の素数さん
21/11/01 19:27:48.17 S5VLTjgn.net
>>801
>1.自然数Nの空でない部分集合Aを取って、その元を降順に並べて、列を作る
> 但し0を含むから
> a_1>a_2>…>a_n>…> 0 となる
もし、Aの元全部を並べるつもりなら
必ず上記のようにできるとはいえない
なぜなら、Aが無限集合なら、
そもそも最大元がないから
始まりとなるa_1が存在しな�


904:「 おわかり? >2.直感的には、a_1=n ∈N だから、 > 列の長さは、n+1以下だ >3.しかし、数学的にはNは無限集合だから、 > nに上限がないので、有限長の主張としては、そこがちょっと弱点だ もし、Aが無限集合で、その元全部を並べるつもりなら そもそも、始まりとなるa_1が存在しないから無意味 もし、Aが無限集合でも、全部並べることはあきらめて とにかくあるAの元から始めるというなら どの元から始めても有限長になる 列の長さに上限がないからといって、 無限長の列が存在するとはいえない おわかり? >4.よって、「a_1=n」を言わずに、最小元の存在だけで、列が有限長だと主張したい 無理 a_1が自然数であることはNの降鎖として必要 >そのために、極小条件>>654を使うのが綺麗だってこと >(極小条件に有限長が示されている) そもそも君が考える列は、始まりがない場合降鎖ではなく、0から始まる昇鎖 (その場合、インデクスは逆順でつける)



905:132人目の素数さん
21/11/01 19:29:40.96 S5VLTjgn.net
>>802
>2.さて、ノイマン構成の自然数集合N={0,1,2,・・・}の元として、
>可算無限シングルトンの元・・{{{{}}}}}・・が無くて
>あるn= { {}, {{}}, { {}, {{}} }, { {}, {{}}, {{}, {{}}} }・・・ }n
>(ここに }nは、空集合{}までの”nesting depth”を示す )
>で終わったとすると
ちょっと待った
・・{{{{}}}}}・・が無いと、nesting depthの上限がnとなる
と決めつけてるけど その証明は? ないよね
実際にはNに・・{{{{}}}}}・・なんてないけど
>3.よって、{ {}, {{}}, { {}, {{}} }, { {}, {{}}, {{}, {{}}} }・・・ }n ・・・
> の状態の元が存在しなければ、Nは無限集合たりえない
仮定が間違ってるので、その証明は失敗
Nは任意の自然数nに関する
{ {}, {{}}, { {}, {{}} }, { {}, {{}}, {{}, {{}}} }・・・ }n
の和集合なので、存在する
その場合最後の}はもちろん存在する

906:132人目の素数さん
21/11/01 19:36:24.77 S5VLTjgn.net
vxXoa7Zf (=0PUyxUhS) は、何故
「無限シングルトン」…{{{}}}・・・だと駄目で
「有限シングルトン全体の無限集合」{{},{{}},{{{}}},…}ならいいのか
よ~く考えたほうがいいと思うよ

907:132人目の素数さん
21/11/01 21:11:04.36 xMKlm24x.net
>>781
kingが初めからkingではなかった様に
魔羅パピヤスも初めから魔羅パピヤスではなかった
関係ないが一節
♪嗚呼 天才の Qman~よどこーへー
♪お前は どこへ 飛~んでゆく
♪嗚呼 気違いの kingが~ ほらぁ
♪『下』を出しぃてーぇーぇ くーるぅってら

908:132人目の素数さん
21/11/01 23:39:15.25 0PUyxUhS.net
>>758 補足
>帰納法の仮定 1., 2. を満たす論理式 P(n) が与えられたとする。自然数の部分集合 A を A = { n ∈ N : ¬ P(n) } によって定める。
>この A が空集合であるということを示したい。
>そうでないと仮定すると、Aに属する最小の自然数 a を取ることができるが、P(0)は成り立っていることから a は0でない。
>従って、ある自然数 b について a = b + 1となっているが、a は A に属する最小の自然数であったということから、b not∈ A であり、P(b) は成り立つことになる。
>帰納法の仮定から P(a) も成り立つことになり、これは矛盾である。
ここの補足
下記なかけんの数学ノートが結構分かり易いね
URLリンク(math.nakaken88.com)
なかけんの数学ノート
自然数の整列性と数学的帰納法 2020年12月19日
【目次】
最小元
自然数の整列性
自然数の整列性と数学的帰納法の原理
いろいろな数学的帰納法の形
おわりに
定理(自然数の整列性から数学的帰納法の原理)
N の、空でない部分集合には、必ず最小元があるとする。

以下の内容は証明というよりは、証明の概要のようなものです。
次のような集合 T を考えます。
T={n∈N?n not∈S}
つまり、
S の補集合です。このとき、
T=Φ なら、 S=N が言えます。
もし、 T が空集合でないとすると、最小元 m が存在します。(a)より、
m≠0 です。このとき、
w+=m となる w が存在します。
w<m なので、 m の最小性から w not∈T が成り立ちます。つまり
w∈S となります。(b)より w+=m∈S となりますが、これは
m∈T に矛盾します。
以上から、 T=Φ なので、
S=N が示せました。
これより、数学的帰納法の原理と整列性は同値だとわかります。
(引用終り)
以上

909:132人目の素数さん
21/11/01 23:55:06.28 0PUyxUhS.net
>>804
ID:GFaoa/dGさんは、基礎論廃人さんだね
今日は、11時から5ch出勤か(下記)
毎日、ご苦労さん
URLリンク(hissi.org)
数学 > 2021年11月01日 > GFaoa/dG
書き込み順位&時間帯一覧
12 位/78ID中 Total 6
時間 11 12 13 14 15 16 17 18 19 20 21 22
書き  1  0  0  0  0  0  0  1  1  0  2  1  0  6
込み数
書き込んだスレッド一覧
132人目の素数さん
Inter-universal geometry と ABC予想 (応援スレ) 60
大学学部レベル質問スレ 16単位目
(引用終り)
>お前証明読めんやん?
妄想でしょ? そりゃ、読めない高等数学の証明は、世の中沢山あるよ
殆どそうと言って過言でないけどね
でも、おっさんの証明は見たことないぜ
>お前に何度も何度も証明つけて説明したけど全部わからんかったんやろ?
知らんよ、妄想お断りだよ
”何度も”は、複数回で2回以上でしょ?
”何度も何度も”だったら、4回以上だぜ
知らんよ、妄想お断りだよ
>お前に数学理解できる知能ないって
お前に、定義以上のことができる知能ないって
証明? 知らんよ、妄想お断りだよ

910:132人目の素数さん
21/11/02 00:15:55.87 ZFNf+G/G.net
>>805
>なぜなら、Aが無限集合なら、
>そもそも最大元がないから
>始まりとなるa_1が存在しない
そうだよ
その通りだよ
分かってきたじゃん、お主w
でも、それだけで済むなら、証明は3行だよね?(下記)
<証明もどき>
列の始まりとなるa_1は、ある自然数nだから a_1=nで、
最小元は0又はそれ以上
自然数は、>に対し全順序だから、列の長さはn+1以下で有限に過ぎない
QED
おわかりか?
数学的帰納法も何も不要でしょ?
やっぱ、極小条件使って、有限長を、すっきりと示すべきじゃね?

911:132人目の素数さん
21/11/02 00:27:49.19 ZFNf+G/G.net
>>806
>・・{{{{}}}}}・・が無いと、nesting depthの上限がnとなる
>と決めつけてるけど その証明は? ないよね
証明いらんでしょ?
nesting depthの上限が有限nで終わったら、Nは有限集合でしかない
だった、それ以上の何か必要だよね。それを、・・{{{{}}}}}・・と書いた
>実際にはNに・・{{{{}}}}}・・なんてないけど
別にどう表現しようと結構だが
有限 n= { {}, {{}}, { {}, {{}} }, { {}, {{}}, {{}, {{}}} }・・・ }n (ここに }nは、空集合{}までの”nesting depth”を示す )
で終われないよね、分かってるよね
>Nは任意の自然数nに関する
>{ {}, {{}}, { {}, {{}} }, { {}, {{}}, {{}, {{}}} }・・・ }n
>の和集合なので、存在する
nが有限で終わったら、有限集合にしかならんぜ
nは無限大(極限)まで走らないと、無限集合にならんぜ

912:132人目の素数さん
21/11/02 06:01:27.93 W8uEDlcI.net
>>811
>>なぜなら、Aが無限集合なら、
>>そもそも最大元がないから
>>始まりとなるa_1が存在しない
>そうだよ その通りだよ
>分かってきたじゃん、お主
で、それ故、無限上昇列は降下列にならない
ってことは理解した?
>列の始まりとなるa_1は、ある自然数nだから a_1=nで、
>最小元は0又はそれ以上
>自然数は、>に対し全順序だから、列の長さはn+1以下で有限に過ぎない
>数学的帰納法も何も不要でしょ?
列の長さはn+1以下、というのはどうやって導いたの?
(n-0)+1かい? で足し算や引き算の定義はどうするの?
>やっぱ、極小条件使って、有限長を、すっきりと示すべきじゃね?
極小条件を証明するのに数学的帰納法を使うんなら、同じだけど
もしかして、数学的帰納法が理解できないから、
それと同値である極小条件を「公理」とすべきっていってる?
それ論理じゃなくただの趣味だよね?

913:132人目の素数さん
21/11/02 06:08:14.18 W8uEDlcI.net
>>812
>>・・{{{{}}}}}・・が無いと、nesting depthの上限がnとなる
>>と決めつけてるけど その証明は? ないよね
>証明いらんでしょ?
「いらん」以前に「できん」でしょ?
だって間違いだから
>nesting depthの上限が有限nで終わったら、Nは有限集合でしかない
そこは否定してないよ
「無限集合なら、nesting depthが∞となる元がある」
という君の主張を否定してる
Nのどの元も自然数だから、そのnesting depthは有限
ただ、いくらでも大きい自然数が存在するから
nesting depthに上限がないだけ
上限がないから、無限回nestする元が存在するなんていえないよ
それ、ウソだから 分かる?
>(nesting depthの上限がないなら)それ以上の何か必要だよね。
ああ、無限集合でしょ? それ以外なにかある?
>それを、・・{{{{}}}}}・・と書いた
それ、間違ってるよ よ~く 考え直してみ
時間はいくらでもあるからさ

914:132人目の素数さん
21/11/02 06:24:56.45 W8uEDlcI.net
>>812
>有限 n= { {}, {{}}, { {}, {{}} }, { {}, {{}}, {{}, {{}}} }・・・ }n
>(ここに }nは、空集合{}までの”nesting depth”を示す )
>で終われないよね、分かってるよね
だから、無限集合だよね
>nが有限で終わったら、有限集合にしかならんぜ
>nは無限大(極限)まで走らないと、無限集合にならんぜ
もしかして、無限集合だから、∞って元があると思ってる?
もし、君が「Nの要素の中に∞が見える」というなら、それ、幻覚だから
「決定�


915:ヤ号∞」も「無限シングルトン」も元はその誤解からだね それ、恥ずかしいから今ここで誤りに気付いたほうがいいよ



916:132人目の素数さん
21/11/02 07:38:55.37 ZFNf+G/G.net
>>813
(再録)>>811
<証明もどき>
列の始まりとなるa_1は、ある自然数nだから a_1=nで、
最小元は0又はそれ以上
自然数は、>に対し全順序だから、列の長さはn+1以下で有限に過ぎない
QED
数学的帰納法も何も不要でしょ?
(引用終り)
1.「列の始まりとなるa_1は、ある自然数nだから a_1=n」が正当化できれば、後は2行で証明はすぐ終わる
2.数学的帰納法は不要。「最小値原理」は「数学的帰納法の原理」と同等だから>>757
3.で、上記1を証明するのが、あんたの>>654の証明であり、それは”松坂和夫氏の「集合・位相入門」の第3章§3の問2
 の解答をほぼそのまま”>>663 が、”極小条件”の証明だよね。
 上記1に証明が要らないなら、>>654の証明(松坂和夫氏の「集合・位相入門」の第3章§3の問2 の解答)って何?
 大袈裟に、選択公理使う証明って
4.言い換えれば、a_1=nが許されるならば、a_1=n+1もあり、a_1=n+2もあり・・、となるよ
 これ、どうすんの?ってことよ

917:132人目の素数さん
21/11/02 07:50:33.14 W8uEDlcI.net
>>816
>1.「列の始まりとなるa_1は、ある自然数nだから a_1=n」
>が正当化できれば
降鎖の定義から明らかだけどな
>2.数学的帰納法は不要。「最小値原理」は「数学的帰納法の原理」と同等だから
それは「数学的帰納法」のかわりに「最小値原理」を公理にするという意味か?
「最小値原理」が公理でないなら「数学的帰納法」で証明する必要があるのは
理解してる?
>上記1を証明するのが、>>654の証明であり
違うけど
1.は降鎖の定義から明らか
2.の「最小値原理」を証明するのが、>>654の証明
>上記1に証明が要らないなら、
>>>654の証明って何?
>大袈裟に、選択公理使う証明って
選択公理から、整列定理が導かれるのは承知してる?
>4.言い換えれば、a_1=nが許されるならば、
> a_1=n+1もあり、a_1=n+2もあり・・、となるよ
> これ、どうすんの?ってことよ
どうもせんけど 何が困るの?

918:132人目の素数さん
21/11/02 07:52:32.07 ZFNf+G/G.net
>>814
URLリンク(encyclopediaofmath.org)
Encyclopedia of Mathematics
Ordinal number
transfinite number, ordinal
The ordinal number of the set consisting of 1 and numbers of the form 1-1/n where n∈N, ordered by the relation ≦, is ω+1.
(引用終り)
ここ、熟読しなよ
n=1,2,3・・,n,・・とすると
0,1/2,2/3,・・,(n-1)/n,・・,1 この列がω+1だってことね
1より左は、・・としか書けないよね、ωは極限順序数だから
{}も同じだよ

919:132人目の素数さん
21/11/02 07:56:06.94 ZFNf+G/G.net
>>815
だんだん、分かってきたじゃんw
珍説2(>>363より)
「<上昇列 0<1<・・・ω という無限列があり得る」と
「<上昇列 0<1<・・・<ω が有限列にしかなり得ない」は
両立する
(引用終り)
珍説でしょw
>「決定番号∞」も「無限シングルトン」も元はその誤解からだね
誤解はあなた
珍説2から、誤解が生まれていると思うよw

920:132人目の素数さん
21/11/02 08:01:00.73 W8uEDlcI.net
>>818
>0,1/2,2/3,・・,(n-1)/n,・・,1 この列がω+1だってことね
>1より左は、・・としか書けないよね、ωは極限順序数だから
で、それ1から始まり0で終わる降鎖になる?
ならないよね?1の次の「1より小さい数」がないから
ωは極限順序数で、前者がないから
>>783にある、降鎖の定義、理解してる?
「順序集合Aの元の列(a_n)n∈Nで、
 a_1>a_2>…>a_n>…
 となるものをAにおける降鎖という」
1,・・,(n-1)/n,・・・・,2/3,1/2,0
この「無限列」で、a_1=1として、a_2は何?
もうずっと同じ質問を繰り返しされてるけど一度も答えないよね

921:132人目の素数さん
21/11/02 08:05:08.54 ZFNf+G/G.net
>>817
>「最小値原理」が公理でないなら「数学的帰納法」で証明する必要があるのは
>理解してる?
それはこっちのセリフだよ
「最小値原理」を使えば、「数学的帰納法」を使う必要ない
それを言っているのが、”極小条件”の証明じゃね?
>選択公理から、整列定理が導かれるのは承知してる?
歴史的には、ツェルメロが間違えたらしいね
で、ぐだぐだいうなら、>>663のおまえのクソ証明って何なのさw
”列の始まりとなるa_1は、ある自然数nだから a_1=nで、
最小元は0又はそれ以上
自然数は、>に対し全順序だから、列の長さはn+1以下で有限に過ぎない”
この3行を証明と認めるのか?w

922:132人目の素数さん
21/11/02 08:10:51.61 W8uEDlcI.net
>>819
>だんだん、分かってきたじゃんw
君は全然分かってないんじゃない?
∞はNの要素じゃないよ
あと、>>820読んで 降鎖の定義、理解しようね
それで君が「降鎖でないものを降鎖だと思い込んだ」誤りが明らかだから

923:132人目の素数さん
21/11/02 08:16:53.76 W8uEDlcI.net
>>821
>「最小値原理」を使えば、「数学的帰納法」を使う必要ない
だから、それって「数学的帰納法」のかわりに
「最小値原理」を公理にするという意味か?って聞いてるけど、
なんで答えないの? 意味、わかんないの?
>>選択公理から、整列定理が導かれるのは承知してる?
>歴史的には、ツェルメロが間違えたらしいね
文章は正確に書こうな
「ツェルメロが整列定理を証明するのに、無意識に選択公理を使っていた」
ということだろ?いいじゃん、結局気づいたん


924:だから >で、ぐだぐだいうなら ぐだぐだいってるのは君 結局、何がしたいの?



925:132人目の素数さん
21/11/02 08:22:38.48 W8uEDlcI.net
午後相手してやる

926:132人目の素数さん
21/11/02 11:10:25.78 5Cyjwk3N.net
>>808
それ自体はあり得るが流石にking知らないは胡散臭すぎる
日本に居て車興味無いから車知らないってレベル
やっぱ居なかったんじゃねーの

927:132人目の素数さん
21/11/02 12:09:52.87 6hX3jc8X.net
>>817
>> 4.言い換えれば、a_1=nが許されるならば、
>> a_1=n+1もあり、a_1=n+2もあり・・、となるよ
>> これ、どうすんの?ってことよ
>どうもせんけど 何が困るの?
? ”a_1=n+1もあり、a_1=n+2もあり・・、となる”
の部分は、数学的帰納法だよね?
これ、どう説明すんの?ってことよw
>>820
(引用開始)
>>783にある、降鎖の定義、理解してる?
「順序集合Aの元の列(a_n)n∈Nで、
 a_1>a_2>…>a_n>…
 となるものをAにおける降鎖という」
1,・・,(n-1)/n,・・・・,2/3,1/2,0
この「無限列」で、a_1=1として、a_2は何?
もうずっと同じ質問を繰り返しされてるけど一度も答えないよね
(引用終り)
それは、こちらの言い分だよ
上記と、珍説2(>>363より)
「<上昇列 0<1<・・・ω という無限列があり得る」と
「<上昇列 0<1<・・・<ω が有限列にしかなり得ない」は
両立する
(引用終り)
を比べてみろよw
あなたのは珍説でしょww
ようやく分かってきたかい?w

928:132人目の素数さん
21/11/02 12:48:41.81 6hX3jc8X.net
>>813
>>やっぱ、極小条件使って、有限長を、すっきりと示すべきじゃね?
>極小条件を証明するのに数学的帰納法を使うんなら、同じだけど
>もしかして、数学的帰納法が理解できないから、
>それと同値である極小条件を「公理」とすべきっていってる?
ワケワカランことをいう
Zornの補題と選択公理
・Zornの補題を使ってさらに選択公理使うか? 片方で可だろ!
・Zornの補題をつどつど証明するって?w
・Zornの補題を使うなら、それを公理にすべき?w
大丈夫か?w

929:132人目の素数さん
21/11/02 12:50:22.59 6hX3jc8X.net
>>824
>午後相手してやる
いらねー
最近忙しくなったから
アホの相手は、ほどほどにだよ

930:132人目の素数さん
21/11/02 13:18:05.63 W8uEDlcI.net
>>826
>”a_1=n+1もあり、a_1=n+2もあり・・、となる”
>の部分は、数学的帰納法だよね?
違うんじゃね?
>これ、どう説明すんの?
なんで説明がいるの?
>>1,・・,(n-1)/n,・・・・,2/3,1/2,0
>>この「無限列」で、a_1=1として、a_2は何?
>>もうずっと同じ質問を繰り返しされてるけど一度も答えないよね
>それは、こちらの言い分だよ
なんで答えないの?
a_2でどの(n-1)/nを選んでもいいけど、
どれを選んでも有限長になるってのは分かる?
降鎖の長さが無限になるような(n-1)/nなんて存在しないのは分かる?

931:132人目の素数さん
21/11/02 13:26:58.23 W8uEDlcI.net
>>827 大丈夫か?
>>828 忙しいなら一切書き込みやめたら 
    考える能力ゼロの君に数学は無理だよ

932:132人目の素数さん
21/11/02 14:13:29.48 W8uEDlcI.net
もし、自然数の定義をペアノの公理ではなく以下のように定義するなら、
最小値原理を公理としてもいいがね
1.最小の自然数が存在する(これを0と名付ける)
2.自然数の部分集合が空でないならかならず最小値nが存在し
  もしこれが最小の自然数0とは異なるならば、
  n未満の自然数の最大値mが存在する
  (sを後者関数とすれば、n=s(m)となる)

933:132人目の素数さん
21/11/02 18:09:00.00 W8uEDlcI.net
順序集合Aの、任意の(空でない)全順序部分集合が
Aの中の上限を有するとき、帰納的という
■Zornの補題
 帰納的な順序集合は極大元を持つ
上記は以下の2つの補題の証明により証明される
■補題2
 Aを帰納的な順序集合とし
 φを写像A→Aで、任意のx∈Aに対し
 φ(x)≧xとなるものとする
 そのときφ(a)=aとなるa∈Aが存在する
■補題3(対偶系)
 順序集合Aについて
 任意のx∈Aに対しφ(x)≧xとなる
 いかなるφ:A→Aでも、φ(a)=aとなるa∈Aが存在すれば
 Aは極大元を持つ
選出公理は補題3の証明で用いられる

934:132人目の素数さん
21/11/02 18:10:52.97 W8uEDlcI.net
■補題3
 Aを極大元を持たない順序集合とすれば
 φ:A→Aで、任意のx∈Aについて
 φ(x)>xとなるものが存在する
(証明)
 Aの全ての空でない部分集合からなる集合系をMとする
 選出公理によって、Mで定義された写像Φで
 Mの全ての元mに対しΦ(m)∈mとなるものが存在する
 Aは極大元を持たないと仮定されているから
 x∈Aに対して{y|y∈A,y>x}=m_xとおけば、
 どのx∈Aに対してもm_x≠{},すなわちm_x∈M
 そこで、任意のx∈Aに対し
  φ(x)=Φ(m_x)
 としてφ:A→Aを定義すれば、
 φ(x)∈m_xであるから、φ(x)>xとなる


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch