21/08/21 16:18:28.64 RkttXagr.net
>>52
>代表100個しか使わないから、可測か非可測かを論じることが無意味
はいバカ ほんと1はバカw
簡単のため箱の中身の集合Sは要素mとする このとき
決定番号1の列 1本
決定番号2の列 m-1本
決定番号3の列 (m-1)m本
決定番号4の列 (m-1)m^2本
・・・
決定番号nの列 (m-1)m^(n-2) (n>=2)
となる
つまり、測度についても
決定番号2の数列集合の測度
=決定番号1の数列集合の測度×(m-1)
決定番号n+1の数列集合の測度
=決定番号nの数列集合の測度×m (nが2以上)
となると考えられる
しかし、上記の場合
・決定番号1の集合の「測度が0ならば
どの決定番号nの集合の測度も0であり全体の測度も0
・決定番号1の集合の測度が0でないならば
どの決定番号nの集合の測度も0でなく全体の測度は∞
となる
つまり、全体の測度が1となるように、
決定番号1の集合の測度を決めることはできない
>>93で書いたのと同じ・・・そう、ヴィタリと同じ現象!
そこが要だぞ 分かったか オチコボレの💩1w
測度1にできないからといって「非正則分布を使う」とか
勝手に脊髄反射するのは論理が分からんバカだけw