箱入り無数目を語る部屋2at MATH
箱入り無数目を語る部屋2 - 暇つぶし2ch851:132人目の素数さん
22/05/13 09:04:09.06 ISbFbGqJ.net
ちなみに、同様の記述は、より初等的な>>788でも使える。
確率版の788:< > をガウス記号とする。また、箱が1つだけ与えられている。
出題者は、x∈[0,1] をランダムに1つ選び、<x+0.5> の値を箱の中に入れる。
回答者は、箱の中身を言い当てなければならない。ただし、箱の中身が
「何らかの x∈[0,1] に対する <x+0.5> である」ことを予め知っているものとする。
明らかに、箱の中身は 0,1 のいずれかである。そこで、回答者は 0,1 の2つの数から
ランダムに数を選んで、それを回答として提示する。すると、回答者が正解する確率は 1/2 である。
確率を使わない788:< > をガウス記号とする。また、箱が1つだけ与えられている。
出題者は、x∈[0,1] を任意に1つ選び、<x+0.5> の値を箱の中に入れる。
回答者は、箱の中身を言い当てなければならない。ただし、箱の中身が
「何らかの x∈[0,1] に対する <x+0.5> である」ことを予め知っているものとする。
明らかに、箱の中身は 0,1 のいずれかである。そこで、回答者を2人に増やし、
背番号kの回答者は k を回答として提出する(k=0,1)。
すると、2人の回答者のうち、片方は正解し、もう片方は不正解になる。つまり、
∀x∈[0,1] s.t. 2人の回答者のうち、片方は正解し、もう片方は不正解
が成り立つ。
・・・ペテン師はこのような記述に一体なんの不満があるというのか?


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch