21/11/26 12:43:26.37 6h2w1EIz.net
>>2
> Sergiu Hart氏は、ちゃんと”シャレ”が分かっている(関西人かもw)
>Some nice puzzles Choice Games と、”おちゃらけ”であることを示している
Puzzleには難問、難題、困惑などの意味もある。日本語のパズルがそのまま外国でも通じると思ってるのかな?はずいね
766:132人目の素数さん
21/11/28 00:52:58.71 ww3V7C0M.net
mathematics puzzle
約 297,000,000 件
puzzle と mathematics は相性良いみたいだね
誰かな?puzzle だからおちゃらけとか言ってるアホは
767:132人目の素数さん
21/11/28 07:34:58.10 go1jbw15.net
>>721
>誰かな?puzzle だからおちゃらけとか言ってるアホは
無限列の決定番号は確率1で∞
0.999…<1に決まってる、とする
俺様数学帰納法でおなじみの
ナニワの中卒ド素人 SET Aでしょう
768:132人目の素数さん
22/01/16 09:14:30.02 UCRiVL/x.net
ZFCではどの列の決定番号も自然数
こんな簡単なことも理解できないのに何で数学なんかに興味持ったの?
769:132人目の素数さん
22/01/16 10:42:07.26 1Zht0UXv.net
自然数は∞だからね
770:132人目の素数さん
22/04/10 19:35:56 bekglnNH.net
>>723
自然数だけど具体的な値を決定するには無限の手間がかかる
無限の手間がかかる戦略って意味あるのか
771:132人目の素数さん
22/04/11 12:10:41.04 CJ6NW0TN.net
>>725
1.手間の問題ではないだろう
数学では、例えば選択公理は、無限の手間を 可能とする公理を置く
他にも、無限集合AとBとの比較で、公理から導ければ、無限の手間は、数学では可能と考える
2.問題は、具体的な実行可能性でしょう
つまり、例えば いま箱に0~9の数を入れて、可算無限数列を作る
これに、ある箱の後に小数点を入れると、実数の無限小数表現になる
例えば、π=3.14159・・・ (数列 314159・・・で、一番目と二番目の間に小数点を入れる)
3.ここで、任意の実数で無限小数表現の数列を作ることができるが、
一方で、その数列がどの同値類に属するかの具体的な決定能力を、現代数学は有しない
例えば、下記のe+πの無限小数表現の数列が具体的にどの同値類に属するかを決定できるならば、e+πが超越数かどうかが決定できるはず
だが、現代数学では、これは未解決問題(オープン)で、数列のしっぽが有理数か無理数かさえも、決定できていない
4.そして、そもそも、決定番号による確率計算は、現代数学の測度論による確率計算では正当化できない
例えば、いま箱に0~9の数をランダム入れて、可算無限数列を作るとする
各箱は、IID(独立同分布)の確率変数の族、X1,X2,・・Xi,・・ として扱えるから
∀i P(Xi)=1/10 である。時枝氏のいう 99/100とはならない
(参考)
URLリンク(ja.wikipedia.org)
超越数
超越数かどうかが未解決の例
e+π、e-πは
有理数であるのか無理数であるのか超越的であるのか否かは証明されていない
URLリンク(ja.wikipedia.org)
772:%E5%88%86%E5%B8%83 独立同分布(どくりつどうぶんぷ、英: independent and identically distributed; IID, i.i.d., iid)
773:132人目の素数さん
22/04/23 14:00:38.07 MU2asfqc.net
>>726 補足
Inter-universal geometry と ABC予想 (応援スレ) 65
スレリンク(math板:293番)
293 名前:132人目の素数さん[sage] 投稿日:2022/04/13(水) 18:52:30.55 ID:MYB/2eLz
私の知り合いの大阪大卒の人が
「なんか数学板に大阪大学工学部卒と称する人が
数学的に誤ったことを何年も主張しつづけてるらしいけど
大変恥ずかしい」
というので、こう慰めました
(引用終り)
大阪大学の数学科で、確率論の単位を取って
なお、時枝「箱入り無数目」>>1 に
何年も
誑かされているなら
恥ずかしいから、”大阪大学”の数学科出身と名乗らないように!
そう言っておいてくれw
774:132人目の素数さん
22/05/02 00:10:09.13 tSHR0swX.net
>>725
手間?
あんたに数学は無理だから早々に諦めた方が良い
775:132人目の素数さん
22/05/02 00:22:49.88 tSHR0swX.net
>>726
>例えば、下記のe+πの無限小数表現の数列が具体的にどの同値類に属するかを決定できるならば
できるよ? ある位から先の位が全部同じ無限小数表現を持つ実数は同値
時枝戦略の同値関係の定義分かってないの?
>そして、そもそも、決定番号による確率計算は、現代数学の測度論による確率計算では正当化できない
できるよ? おまえがただ単に時枝戦略の確率空間を誤解してるだけ
>例えば、いま箱に0~9の数をランダム入れて、可算無限数列を作るとする
>各箱は、IID(独立同分布)の確率変数の族、X1,X2,・・Xi,・・ として扱えるから
時枝戦略は扱ってない。
「扱える」と「扱う」が区別できないバカに数学語る資格無し。
776:132人目の素数さん
22/05/02 13:23:43 tSHR0swX.net
>>726
>例えば、下記のe+πの無限小数表現の数列が具体的にどの同値類に属するかを決定できるならば、e+πが超越数かどうかが決定できるはず
>だが、現代数学では、これは未解決問題(オープン)で、数列のしっぽが有理数か無理数かさえも、決定できていない
時枝戦略と無関係な未解決問題が解決されないと時枝戦略不成立と言いたいの?
どんなペテン師だよw
777:132人目の素数さん
22/05/02 17:27:28.47 D32+lJLN.net
>>729
>>例えば、下記のe+πの無限小数表現の数列が具体的にどの同値類に属するかを決定できるならば
>できるよ? ある位から先の位が全部同じ無限小数表現を持つ実数は同値
ご苦労様
数学として、一般的に 理論上できると仮定することは、よくある。例えば、選択公理とかね。その方が理論がすっきりする場合が多い
しかし、具体的な実行可能性とは、また別の話になる(例えば、下記の渕野先生 ご参照)
で、いま問われているのは、”e+πの無限小数表現の数列が具体的にどの同値類に属するか”を、「具体的に」決定できるか? ってことだ
これが出来ないと、時枝記事の同値類の代表を具滝的に取り出すことは、出来ないよね
逆に、もしe+πの無限小数表現の数列が、どの同値類に属するかを決定できたなら
数列のシッポが循環するかしないかを見れば
少なくとも、e+πは 有理数か無理数かは、区別ができることになる。が、現実的には、いまの人類の数学では、具体的実行はまだ出来ないのです
もし、上記の行為が出来ると主張するならば
”一つで良いから、無理数で、具体的な無限小数表現を最後までやり切った例”を示せ
無いよね、そんな例はw
”無理数で、具体的な無限小数表現を最後までやり切った例”は、数学史上 今まで一つもない!
だから、具体的な全無理数の同値類の構築など、夢のまた夢で、従って「具体的な同値類から、その代表を取り出す」ことも不可能ってこと
そして、上記は、箱に入れる数は、たったの0,1,2,3,4,5,6,7,8,9の10種のみだ
一方時枝は、箱に入れるのは、任意の実数(連続無限通り)だから、10進小数の無限長展開と同値類決定さえ 具体的実現ができないならば、
時枝論法の具体的な実行は無理だよ
(参考)
URLリンク(www.jstage.jst.go.jp)
数学と集合論 -ゲーデルの加速定理の視点からの考察- 渕野 昌 科学基礎論研究2018
P8
証明の長さの比較を例として議論するが、V6の要素の数は既に宇宙に存在する全原子の総
778:数と想定される数を超えるので、 V8中を全検索して証明の有無を決定するという判定法は実行可能なものとなっていない。 (引用終り) 以上
779:132人目の素数さん
22/05/02 17:42:46 D32+lJLN.net
>>731 補足追記
時枝論法の具体的な実行は無理であり
従って、確率99/100の箱の数の的中も、具体的に実行できない
また、測度論で確率99/100を正当化することも出来ていない
(コルモゴロフの理論では、測度論的に、全事象Ωに測度1を与えなけばならないが、箱の中の未知数xiの可能性が連続無限なら、時枝問題の的中確率は0です)
つまり、時枝論法の具体的な実行は不可能であり
時枝の箱の数当ては、測度論的にも、的中確率0です
780:132人目の素数さん
22/05/02 17:49:32 tSHR0swX.net
>>731
箱入り無数目ではすべての箱の中身を出題者が決定した後に回答者の数当てが始まるから
e+πの10進小数表示が不明などという主張は箱入り無数目に対してはまったくナンセンス
ペテン師が論点ずらして誤魔化そうとしても無駄 ここは数学板なのでペテン師は遠慮願います
781:132人目の素数さん
22/05/02 17:50:59 tSHR0swX.net
>>732
>時枝論法の具体的な実行は無理であり
時枝戦略を実行できない実数列をひとつでいいから挙げて下さいね?ペテン師さん
782:132人目の素数さん
22/05/02 17:54:35 tSHR0swX.net
ペテン師さんはe+πとか答えるのかな?
それ、実数列を挙げたことにならないことは理解できる?中卒じゃ無理かな?
783:132人目の素数さん
22/05/03 05:42:15.30 M0sMqS4n.net
>で、いま問われているのは、”e+πの無限小数表現の数列が具体的にどの同値類に属するか”を、「具体的に」決定できるか? ってことだ
>これが出来ないと、時枝記事の同値類の代表を具滝的に取り出すことは、出来ないよね
この見解は間違っている。どの同値類に属するのかは具体的に記述できる。
時枝戦術で使われている同値関係を ~ と書くことにして、s∈R^N を取るごとに
C(s):={ t∈R^N|t~s } と具体的に定義すると、C(s) は s から具体的に決まる
唯一の集合である。そして、C(s) は s が属する同値類に他ならない。
すると、e+πの無限小数表現の数列を s とするとき、s が属する同値類は C(s) である。
ほらね、具体的に記述できたじゃん。
ちなみに、この部分には選択公理は必要なく、ZF の中で記述できる。
実際、時枝戦術で使われている同値関係 ~ の定義は ZF の中で記述できているし、
上記の C(s) の定義も ZF の中で記述できている。そして、
「e+πの無限小数表現の数列を s とするとき、s が属する同値類は C(s) である」
という文章は ZF の中で意味を持っている。
784:132人目の素数さん
22/05/03 05:57:30 M0sMqS4n.net
具体性を問うときに本当に問題になるのは、
集合系 { C(s)|s∈R^N } から完全代表系を1つ取り出すところ。
それぞれの集合 C(s) は ZF の中で具体的に記述できているにも関わらず、
そこから完全代表系を1つ取り出すところが ZF の中ではできず、選択公理が必要になる。
ひとたび完全代表系 T が(選択公理によって)取れたならば、
任意の s∈R^N に対して、s ごとに唯一の t∈T が取れて s~t が成り立つ。
そして、t,s から s の決定番号が決まるので、それを d(s) と書くことにすれば、
任意の s∈R^N に対して決定番号 d(s) が定まり、d(s) は必ず自然数である。
いったいどの t∈T が s~t を満たすのか、我々は具体的に知ることはできないので、
d(s) の値も具体的に知ることはできないが、
しかし概念としての自然数 d(s) が存在することだけは保証されている。
785:132人目の素数さん
22/05/03 06:07:01 M0sMqS4n.net
この、「概念としての存在性が保証された d(s)」を用いて時枝戦術を実行すれば、
時枝戦術は正しく機能し、99/100 以上の確率で正解する。
しかし、時枝戦術では、そもそも d(s) の値をもとにして、どの箱を開けるのかを決定する。
従って、d(s) の値が分からないなら、どの箱を開けるのかも分からずじまいである。
つまり、箱を開けるためには、「概念としての d(s)」だけでは不十分であり、
d(s)の値まできちんと分かってなければならない。
しかし、d(s)の値を具体的に知るための構成的な手法は存在し得ない。
「これでは時枝戦術は机上の空論ではないか」というのがペテン師の指摘であろう。
786:132人目の素数さん
22/05/03 06:17:23 M0sMqS4n.net
確かに、それはごもっともな指摘であるが、それと同時に、くだらない難癖でもある。
なぜなら、神託機械と同じ考え方をすれば一瞬で解決するからだ。
・ 目の前に神託(オラクル)と呼ばれるブラックボックスがあって、
このブラックボックスは
787: s∈R^N を入力として受け取り、d(s) の値を出力する という設定を考えればよいだけである。 この設定のもとでは、回答者は d(s) の値を知ることができるので、 時枝戦術によって 99/100 以上の確率で正解する。
788:132人目の素数さん
22/05/03 06:21:56 M0sMqS4n.net
ちなみに、
「そんなブラックボックスは具体的には作れないので無効だ」
という批判は通用しないことを先に言っておく。なぜなら、そのような批判は
「選択公理で存在性が保証されている選択関数は、具体的には作れないので無効だ」
と言っているのと同じだから。
まあ、選択公理そのものを否定したいなら勝手にしろって感じだが。
789:132人目の素数さん
22/05/03 06:24:13 M0sMqS4n.net
というわけで、選択公理を認めるスタンスのもとでは、
時枝戦術は正しく機能して、99/100の確率で正解する。
くだらない難癖もいい加減にしたまえよ。
790:132人目の素数さん
22/05/03 07:40:28 tW03F0xO.net
>>741
>というわけで、選択公理を認めるスタンスのもとでは、
>時枝戦術は正しく機能して、99/100の確率で正解する。
間違っています!!
1)現代数学の確率論では、測度論に基づき、σ-加法族を使います(下記 小池 東大)
2)σ-加法族(完全加法族)に限定しないと、選択公理の下では非可測集合が存在するからです(下記 渡辺 東工大)
3)時枝戦術が、σ-加法族の範囲で、測度論的に正しいという証明をどぞww
4)あるいは、下記 渕野 昌先生のテキストでも読んで、”新しい確率論”を作ってくださいwww
(参考)
URLリンク(www.ms.u-tokyo.ac.jp)
測度論的確率論 *
小池 祐太 † († 東京大学 数理情報・教育研究センター, 大学院数理科学研究科)
2022 年 2 月 28 日
P2
1.2 加法族と σ-加法族
P4
定義 1.3 (可測空間). Σ が S 上の σ-加法族であるとき, 順序対 (S, Σ) を可測空間 (measurable space) と
呼ぶ. このとき, Σ の元は S の Σ-可測集合 (Σ-measurable set) あるいは単に可測集合と呼ばれる.
P40
4 確率論の基礎概念
本節では, 確率論の諸概念が測度論の言葉を用いてどのようにして数学的に定式化されるのかというこ
とについて説明する. 以下, (?, F, P) を確率空間とする. すなわち, ? は集合, F は ? 上の σ-加法族, P は
(?, F) 上の確率測度 (P(?) = 1 であるような (?, F) 上の測度) である. 注意 1.12 ですでに触れたとお
り, この場合, ? のことを標本空間 (sample space), ? の元を標本点 (sample point) や結果 (outcome) な
どと呼ぶ慣習がある. また, 可測集合 (F の元) は事象 (event) と呼ばれる. 事象 A ∈ F に対して, P(A) を
A の起こる確率 (probability) と呼ぶ.
つづく
791:132人目の素数さん
22/05/03 07:40:56 tW03F0xO.net
>>742
つづき
URLリンク(watanabe-www.math.dis.titech.ac.jp)
渡辺澄夫 (東京工業大学)
URLリンク(watanabe-www.math.dis.titech.ac.jp)
ルベーグ非可測集合の存在について
渡辺澄夫 (東京工業大学)
測度論を習うとき、完全加法族(考察する集合の部分集合の族で、測度を定めること
が可能なもの)を定義する必要があります。なぜ完全加法族を定めておく必要があるかと
いうと、可算でない集合においては、任意の部分集合の測度が定められると仮定すると選
択公理に矛盾することがあるからです。
URLリンク(math.cs.kitami-it.ac.jp)
非可測集合は存在するのか?
渕野 昌 (Saka´e Fuchino)
以下のテキストは,北海道大学大学院理学研究科における 2000 年 10 月 10 日の講演のため
のノートに基づくものである.
(引用終り)
以上
792:132人目の素数さん
22/05/03 13:20:20 eIqjlqU9.net
ソーレソーレ鉄骨飲料~
793:132人目の素数さん
22/05/03 13:26:22 oPmYlyKe.net
>>742
>3)時枝戦術が、σ-加法族の範囲で、測度論的に正しいという証明をどぞww
まったく見当違い。
時枝戦略における標本空間ΩはR(箱の中身)ではなく{1,2,…,100}(100列の列インデックス)である。
実際、記事には以下の通り明記されている。
「さて, 1~100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 」
まず国語を勉強してはいかが?数学は時期尚早では?
794:132人目の素数さん
22/05/03 17:23:50.26 tW03F0xO.net
>>745
ほいよ、下記ですよ
”それの証明ってあるかな?
100個中99個だから99/100としか言ってるようにしか見えないけど.”
”P(h(Y)>h(Z))=1/2であれば嬉しい.
hが可測関数ならばこの主張は正しいが,hが可測かどうか分からないのでこの部分が非自明”
どぞ、これの証明をw
証明できないよねww
2016年に、可測性問題で、沈没してるよ、その話
現代数学の系譜11 ガロア理論を読む20 [無断転載禁止](c)2ch.net
スレリンク(math板:519番)
519 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 22:27:11.14 ID:f9oaWn8A
>>518
X=(X_1,X_2,…)をR値の独立な確率変数とする.
時枝さんのやっていることは
無限列x=(x_1,x_2,…)から定められた方法によって一つの実数f(x)を求める.
無限列x=(x_1,x_2,…)から定められた方法によって一つの自然数g(x)を求める.
P(f(X)=X_{g(X)})=99/100
ということだが,それの証明ってあるかな?
100個中99個だから99/100としか言ってるようにしか見えないけど.
522 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 22:40:29.88 ID:f9oaWn8A
面倒だから二列で考えると
Y=(X_1,X_3,X_5,…)とZ=(X_2,X_4,X_6,…)独立同分布
実数列x=(x_1,x_2,…)から最大番号を与える関数をh(x)とすると
P(h(Y)>h(Z))=1/2であれば嬉しい.
hが可測関数ならばこの主張は正しいが,hが可測かどうか分からないのでこの部分が非自明
528 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 23:03:57.29 ID:f9oaWn8A
おれが問題視してるのはの可測性
正確にかくために確率空間(Ω,F,P)を設定しよう
Y,Zはそれぞれ(Ω,F)から(R,B(R))の可測関数である.
もしhが(R,B(R))から(N,2^N)への可測関数ならば
h(Y),h(Z)はそれぞれ可測関数となって{ω|h(Y(ω))>h(Z(ω)}∈FとなりP({ω|h(Y(ω))>h(Z(ω)})=1/2となるけど
hが(R,B(R))から(N,2^N)への可測関数とは正直思えない
529 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 23:04:46.18 ID:f9oaWn8A
>>528
自己レス
(R,B(R))ではなくすべて(R^N,B(R^N))だな
つづく
795:132人目の素数さん
22/05/03 17:24:33.84 tW03F0xO.net
>>746
つづき」
531 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 23:11:40.23 ID:f9oaWn8A
ああ,正しくはP(h(Y)≧h(Z))≧1/2か
まあどちらにせよhが可測性が問題となることは間違いない
532 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 23:15:17.47 ID:f9oaWn8A
>>530
>2個の自然数から1個を選ぶとき、それが唯一の最大元でない確率は1/2以上だ
残念だけどこれが非自明.
hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない
そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう
(引用終り)
以上
796:132人目の素数さん
22/05/03 18:24:57.96 oPmYlyKe.net
>>746
>”P(h(Y)>h(Z))=1/2であれば嬉しい.
そもそも時枝先生は
P(h(Y)>h(Z))=1/2
と言ってないので、この式が成立しないという指摘は完全に的外れ
さんざんに教えてやったのにまだ理解できてなかったんか?
アホも度を越すと矯正不能だね
797:132人目の素数さん
22/05/03 18:49:17.97 oPmYlyKe.net
>>746
中卒でも理解できるようにもう一度だけ教えてやるからよく聞け
自然数A,B(A≠B)があるとする。
P(A>B)=1/2 は言えない。この式が成立つ確率論的根拠が無いから。
一方
A,Bのいずれかをランダムに選んだ方をa、他方をbとすれば
ランダムの確率論的定義から P(a>b)=1/2 が言える。
時枝先生が言ってるのは P(a>b)=1/2 であって、P(A>B)=1/2 ではない。
よってA,Bの可測性うんぬんはまったく的外れ。
なんでこんな簡単なことが何年かかっても理解できないの?
脳に欠陥があるとしか思えない。その脳じゃ数学なんて到底無理では?諦めた方がいいのでは?
798:132人目の素数さん
22/05/04 21:21:53.97 kj0BqQ2l.net
>>746
>100個中99個だから99/100としか言ってるようにしか見えないけど.”
100個中99個だから ラ ン ダ ム に 一 つ 選 べ ば 確率99/100ですが?
ランダムの定義分かりますか? 一様分布、すなわちいずれを選ぶ確率も等しいということですよ?
まだ分かりませんか?頭大丈夫ですか?
799:132人目の素数さん
22/05/04 21:26:22 kj0BqQ2l.net
>>746
元記事にしっかり「ランダム」と書かれてますよ?
「さて, 1~100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 」
これで分からないなら中学からやり直してください
800:132人目の素数さん
22/05/06 08:02:40 f7kU6wic.net
>>746 補足
>正確にかくために確率空間(Ω,F,P)を設定しよう
Ω=R^N
F =B(R^N) (注;下記の渡辺澄夫では、確率空間 (Ω, B, Q) で、F→B、P→Qの対応です)
この確率空間(R^N,B(R^N),P)を、100列になおして、確率空間(100,B(100),P)に出来れば良い
但し、元の空間と同じ”可測を保ったまま”で
しかし、この証明は存在しない!
ID:f9oaWn8A(>>746)氏が、指摘していることは、これです
さていま、任意の箱Xiに入っている数をriとする。riは、任意の実数だった
だから、全実数Rから任意に選んだriを、箱を開けずにピンポイント(1点)的中する確率は、測度論的に0です
(Rの1点は、零集合(下記)であることから従う)
よって、ID:f9oaWn8A(>>746)氏が、指摘していることは、時枝氏の論法は あやしいってことです
(参考)
URLリンク(watanabe-www.math.dis.titech.ac.jp)
データ解析(2021) 渡辺澄夫
URLリンク(watanabe-www.math.dis.titech.ac.jp)
講義でよくある質問について
渡辺澄夫
P3
確率空間
2年生のとき確率論で 確率空間 を習いました。
確率空間 (Ω, B, Q) は次の三組からなる。
Ω:集合
B: 「Ωの部分集合で確率が定義できるもの(※)」の集合族
Q: B から区間 [0,1] への関数
具体的には次のものを考えることが多い。
Ω: 可算集合、RN、C[0,1]、完備可分な距離空間
B: Ωの開集合を含む最小の完全加法族
(※)公理「実数の任意の部分集合の確率を定めることができる」は
選択公理と両立しないので、選択公理と矛盾せずに確率が
定義できる部分集合の族をあらかじめ定めておく必要がある。
URLリンク(ja.wikipedia.org)
測度論
可測集合 S が μ(S) = 0 であるとき零集合 (null set) という。
(引用終り)
以上
801:132人目の素数さん
22/05/06 11:36:33.26 nb6NZ202.net
>>752
時枝先生の問いは「勝つ戦略はあるでしょうか?」ですよ?
>Ω=R^N
は勝てないΩです。
勝てないΩをいくら提示しても勝つΩの非存在は示せません。理解できますか?
時枝先生は勝つΩとしてΩ={1,2,…,100}を提示しているのですから
あなたが為すべきは、Ω={1,2,…,100}でも勝てないことを示すことです。不可能ですけどねw
2016年から考え続けて未だ理解できないんですか?頭悪過ぎませんか?
802:132人目の素数さん
22/05/06 11:39:55.44 nb6NZ202.net
>>752
「さて, 1~100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 」
はい、しっかりと勝つΩ={1,2,…,100}が提示されてますね。
Ωを改悪したうえで勝てないと主張するのはペテン師のやることですよ。
803:132人目の素数さん
22/05/07 14:46:15.06 rfnjAGuA.net
>>752
時枝先生はΩ={1,2,…,100}を明示してるんですから、勝手に違うΩにすり替えないで下さいね?
いくら間違いを認めたくないからってペテン行為はダメですよ?
804:132人目の素数さん
22/05/08 11:21:37.61 nLX79RwP.net
>>753-755
違うよ
・”Ω=R^N”は、初期設定ですよ
時枝氏の記事にあるとおりです。これは、絶対落とせないのです
・そこで ”Ω=R^N”を出発点として、事象の可測性を保持しながら、Ω=100列 の決定番号の大小 に落とせるか?
100個の決定番号 d1,d2,・・di・・d100 di∈N(自然数)
・「可測性が保証されないと、数学としては疑問」ってことですね >>752
可測性の証明がない
だから
ID:f9oaWn8A(>>746)氏が、指摘していることは、時枝氏の論法は あやしいってことです
805:132人目の素数さん
22/05/08 12:50:43
806:.75 ID:/p+piUvM.net
807:132人目の素数さん
22/05/08 15:55:17.21 nLX79RwP.net
>>756-757
>>・”Ω=R^N”は、初期設定ですよ
>> 時枝氏の記事にあるとおりです。
> 1.時枝問題(「箱入り無数目」数学セミナー2015.11月号の記事)の最初の設定はこうだった。
>「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
>どんな実数を入れるかはまったく自由,
ここ、「箱が 可算無限個ある.箱それぞれに,私が実数を入れる」を時枝氏は
下記の通り 記しています。
つまり、”可算無限個ある箱に数を入れたもの”を、数学では、s'=(s'1, s'2, s'3,・・・ )∈R^Nなどと表します(下記時枝記事の通り)
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる」”を、数学の記号で書けば、普通に s'=(s'1, s'2, s'3,・・・ )∈R^Nです
つまり、”Ω=R^N”は、初期設定です! (>>746のID:f9oaWn8Aさん(2016/07/03(日) 23:03:57.29)が、記載している通りです! )
純粋・応用数学(含むガロア理論)8
スレリンク(math板:402番)
402 自分:現代数学の系譜 雑談 ◆yH25M02vWFhP [] 投稿日:2021/05/24(月) 20:33:44.14 ID:q0Et9dwF [6/11]
2.続けて時枝はいう
実数列の集合 R^Nを考える.
s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈R^N
(引用終り)
以上
808:132人目の素数さん
22/05/08 16:42:57.33 /p+piUvM.net
>>758
>「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる」”を、数学の記号で書けば、普通に s'=(s'1, s'2, s'3,・・・ )∈R^Nです
と
>つまり、”Ω=R^N”は、初期設定です!
は、「つまり」でつながりませんけど?w
”Ω=R^N”がどんな確率空間か理解して発言してます?理解してませんよね?
あなたは独善的に勝てないΩを決めつけて勝てない勝てないと騒いでるだけなんです。
時枝先生のΩ={1,2,…,100}なら勝てますから。
809:132人目の素数さん
22/05/08 17:58:28.87 nLX79RwP.net
>>759
>>「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる」”を、数学の記号で書けば、普通に s'=(s'1, s'2, s'3,・・・ )∈R^Nです
>と
>>つまり、”Ω=R^N”は、初期設定です!
>は、「つまり」でつながりませんけど?w
やれやれ・・
繋がってますけどw
下記、原隆(数理物理学)確率論 I, 確率論概論 IのPDFを、熟読ください
(参考)
URLリンク(www2.math.kyushu-u.ac.jp)
原隆(数理物理学)のホームページ 九大
URLリンク(www2.math.kyushu-u.ac.jp)
確率論 I,確率論概論 I Last modified: October 08, 2002
URLリンク(www2.math.kyushu-u.ac.jp)
確率論 I, 確率論概論 I 講義のレジュメをまとめたもの (2002.10.08)
P15
2.1.1 直積空間の構成(少し advanced)
この定義は数学的には「直積測度」「直積確率空間」と
言うものを使っていることになる.
定義 2.1.4 (2つの確率空間の直積) (Ωj , Fj , Pj ) を確率空間とする(j = 1, 2).これらの直積
確率空間 (Ω, F, P) を以下のようにして定義する.
・ まず Ω は,Ω1 と Ω2 の直積集合として定義する:
Ω ≡ Ω1 × Ω2 ≡ {(Ω1, Ω2)| Ω1 ∈ Ω1, Ω2 ∈ Ω2}
註 2.1.6 上では2つの確率空間の直積を定義したが,n 個の確率空間の直積も同様に定義する.
なお,後の方では「無限個の」確率空間の直積も必要になるが(大数の強法則に絡んで),それ
はその時に説明する.
(引用終り)
つづく
810:132人目の素数さん
22/05/08 17:59:06.44 nLX79RwP.net
>>760 つづき <補足> ・例えば、一つの箱にサイコロの目を入れる 全事象Ω={1,2,・・,6} サイコロ二つならば、上記のように直積で、(Ω1,Ω2) これは普通にΩ^2と書くことができる。n個ならば、Ω^n。上記「無限個の」確率空間の直積は、時枝記事同様に、Ω^N (Nは自然数の集合)と書ける ・いま、実数の区間I=[0,1]を考える。箱が一つならば、全事象Ω={x|x∈ I}(つまりΩ=I)。上記同様に、箱が二つならばΩ^2、n個ならΩ^n、無限個ならΩ^Nとなる 。ここで、Ω=Iだから、Ω^N=I^Nと書ける ・時枝記事では、箱には全実数Rが可能だから、I→Rとして、無限個の全事象Ω=R^Nとなる これで分からなければ、上記 原 PDF(確率論 I, 確率論概論 I)を何度も読んでください あるいは、大学レベルの確率論の分かる人に聞くか、大学レベルの確率論の講義でも取ってください 以上
812:132人目の素数さん
22/05/08 18:32:43 /p+piUvM.net
>>760
>P15
>2.1.1 直積空間の構成(少し advanced)
>この定義は数学的には「直積測度」「直積確率空間」と
>言うものを使っていることになる.
>定義 2.1.4 (2つの確率空間の直積) (Ωj , Fj , Pj ) を確率空間とする(j = 1, 2).これらの直積
>確率空間 (Ω, F, P) を以下のようにして定義する.
>・ まず Ω は,Ω1 と Ω2 の直積集合として定義する:
> Ω ≡ Ω1 × Ω2 ≡ {(Ω1, Ω2)| Ω1 ∈ Ω1, Ω2 ∈ Ω2}
>註 2.1.6 上では2つの確率空間の直積を定義したが,n 個の確率空間の直積も同様に定義する.
>なお,後の方では「無限個の」確率空間の直積も必要になるが(大数の強法則に絡んで),それ
>はその時に説明する.
時枝戦略のとの字も出てこないですけどw
まったく無関係なソース持ち出して一体何を示したつもりなんですか?頭大丈夫ですか?
813:132人目の素数さん
22/05/08 18:39:14 /p+piUvM.net
>>761
>・例えば、一つの箱にサイコロの目を入れる 全事象Ω={1,2,・・,6}
一つの箱の中のサイコロの目を当てずっぽうで当てるならΩ={1,2,・・,6}になるでしょうね。
しかし時枝戦略は当てずっぽうではありません。やはりまったく理解できてませんね。
そもそも箱の中の実数を当てずっぽうで当てられないのは自明で、数学セミナーの記事になるはずないですよね?頭大丈夫ですか?
814:132人目の素数さん
22/05/08 22:02:39.55 nLX79RwP.net
>>762-763
>時枝戦略のとの字も出てこないですけどw
>まったく無関係なソース持ち出して一体何を示したつもりなんですか?頭大丈夫ですか?
逆でしょ?
現代数学の確率論をしっかり踏まえないと、ダメですよ
現代数学の確率論を理解せずして、時枝戦略だけの浮いた存在にして、それは時枝って数学では無くなっているよね。おとぎ話だよねw
>一つの箱の中のサイコロの目を当てずっぽうで当てるならΩ={1,2,・・,6}になるでしょうね。
あらら、全く現代数学の確率論が理解できない?
それって、数学の議論になりませんよ w
現代数学の確率論は、当てずっぽうではない。それは初期設定ですよ!
良いですか
「時枝戦略」が適用できるのは、可算無限個中のたった一つの箱の数でしかない
では、残りの箱は、確率計算はできないのか?
出来るでしょ。その確率計算が、初期設定から導かれるのです
簡単のために、サイコロを使うことに固定します
>>760-761に書いたように
1)一つの箱にサイコロの目を入れる 全事象Ω={1,2,・・,6}で、的中確率は1/6
2)有限n個の箱にサイコロの目を入れる 全事象Ω={1,2,・・,6}^n で、独立同分布iidを仮定すると、どの箱の的中確率も1/6
もし、nが100列を形成するのに十分大きければ、例えば全体100万個として、その内1つだけ確率99/100ですか?w
でも、他の箱は? 確率1/6ですよね
3)さて、時枝の可算無限個の箱で、初期設定として、サイコロの目で全事象Ω={1,2,・・,6}^Nで、その内1つだけ確率99/100ですか?
でも、他の箱は? 初期設定により、確率1/6ですよね
さて次に、時枝の通り、サイコロの目の代わりに、任意の実数Rを入れて良いとします
そうすると、初期設定は、Ω=R^N です。箱は可算無限個です。その内1つだけ確率99/100ですか?
可測性の保証(数学的な証明)は、ありますか?w
独立同分布iidを仮定すると、どの箱の的中確率も、連続濃度に対する一点的中だから、測度論として、普通に これは0以外の値は出せませんけどねw
815:132人目の素数さん
22/05/08 22:06:20.60 IbQ7wXmC.net
>>764
現代の確率論を半端な知識で無理やり使おうとするから理解できないんだろ、クズすぎたろ
816:132人目の素数さん
22/05/09 00:36:55 Yu4Idjn7.net
>>764
>現代数学の確率論を理解せずして、時枝戦略だけの浮いた存在にして、それは時枝って数学では無くなっているよね。おとぎ話だよねw
時枝戦略は現代数学の確率論の中ですけど?
相変わらず全く理解できてないですね
>>一つの箱の中のサイコロの目を当てずっぽうで当てるならΩ={1,2,・・,6}になるでしょうね。
>あらら、全く現代数学の確率論が理解できない?
>それって、数学の議論になりませんよ w
>現代数学の確率論は、当てずっぽうではない。それは初期設定ですよ!
離散一様分布は現代数学の確率論の外と言いたいのですか?
相変わらず全く理解できてないですね
>良いですか
>「時枝戦略」が適用できるのは、可算無限個中のたった一つの箱の数でしかない
>では、残りの箱は、確率計算はできないのか?
>出来るでしょ。その確率計算が、初期設定から導かれるのです
残りの箱の確率計算?何の話をしてるんですか?箱入り無数目の話をして下さいねw 箱入り無数目のルールは理解してますか?
>そうすると、初期設定は、Ω=R^N です。
それはあなたの独善設定です。記事にそんな記述はありません。
>箱は可算無限個です。その内1つだけ確率99/100ですか?
違います。
「確率99/100で当てられる箱」を
817:選択できるのが時枝戦略です。 指定された一つの箱の中身を確率99/100で当てられる訳ではありません。 まったく分かってませんね。 >可測性の保証(数学的な証明)は、ありますか?w ありますよ?w Ω={1,2,…,100}、つまり有限集合ですよ?w なんで非可測だと思うんです?w >独立同分布iidを仮定すると、どの箱の的中確率も、連続濃度に対する一点的中だから、測度論として、普通に これは0以外の値は出せませんけどねw 時枝戦略の話をしてもらえますか?あなたの独善仮定の話は結構です。
818:132人目の素数さん
22/05/09 00:55:13.77 Yu4Idjn7.net
>>764
要するにあなたは時枝戦略を理解できないので、全く関係無い話を独善展開しているだけなんです。
記事のどの記述がどう間違ってるのかまったく示そうとしないのがその証拠です。
819:132人目の素数さん
22/05/09 01:05:41.76 Yu4Idjn7.net
未だ反論があるなら
記事のどの記述がどう間違ってるのかを語って下さいね
あなたの独善妄想の話はうんざりですから
820:132人目の素数さん
22/05/09 07:19:53.81 AHAjSGxA.net
>>766-768
1)時枝氏の記事は、下記のように、Peter Winkler氏との茶のみ話がてら耳にした 数学パズルを数学セミナー誌に纏めたものですが
2)数学パズルには、大まかに二種類あって、a)面白いが数学的に成り立たない話(例 下記 ペンローズの階段)、b)一見難しいが、トリッキーな解法がある場合(例 下記 マッチ棒パズル)に分けられる
3)時枝氏の記事は、上記のa)です。実際、確率論のテキストでは一切扱われない オチャラケのパズルです
4)そもそも、「時枝氏の記事は正しい」を大前提として論を進めるのは、数学的には循環論法ですよ
5)初期設定は、”可算無限個の箱に入った実数の集合R^N”で、ここを出発点として
”無限個の実数が与えられ,一個を除いてそれらを見た上で,除いた一個を当てよ”
↓
”確率99%で勝てそうな戦略を供する”
ですが、無いですよ、そんな戦略
(参考)
純粋・応用数学(含むガロア理論)8
スレリンク(math板:406番)
まず、数学セミナー201511月号の記事で、引用していなかった部分を、以下に引用する(^^;
”ばかばかしい,当てられる筈があるものか,と感じられるだろう.
何か条件が抜け落ちているのではないか,と疑う読者もあろう.問題を読み直していただきたい.
条件はほんとうに上記のとおり.無限個の実数が与えられ,一個を除いてそれらを見た上で,除いた一個を当てよ,というのだ.
ところがところが--本記事の目的は,確率99%で勝てそうな戦略を供することにある.
この問題はPeter Winkler氏との茶のみ話がてら耳にした.氏は原型をルーマニアあたりから仕入れたらしい.”
URLリンク(ja.wikipedia.org)
ペンローズの階段 ライオネル・ペンローズと息子のロジャー・ペンローズが考案した不可能図形である。
URLリンク(upload.wikimedia.org)
URLリンク(analytics-notty.tech)
【数学クイズ・パズル】面白い数学クイズ・パズル ? マッチ棒編 2018年6月24日2020年5月17日
821:132人目の素数さん
22/05/09 07:36:08.44 AHAjSGxA.net
>>765
ふっw
現代数学の測度論に基づく確率論が分かって無さそうな人に言われてもねw
>>769より
初期設定は、”可算無限個の箱に入った実数の集合R^N”で、ここを出発点として
”無限個の実数が与えられ,一個を除いてそれらを見た上で,除いた一個を当てよ”
↓
”確率99%で勝てそうな戦略を供する”
任意の実数Rを縮小して、区間[0,1]の任意の実数から、可算無限個の箱に数を入れるとする
・箱は一つとする。測度論的に、区間[0,1]の任意の実数の1点(ピンポイント)的中は、0以外の値は取れない(0以外の値を与えると、下記コルモゴロフの確率公理に反することになる)
・箱は有限n個とする。結果は上記同様
・現代数学の確率論の中で、n→∞ とすることができる。結果は上記同様です(分からないなら大学レベル確率論の本で、n→∞に関する記述を調べてください。>>760の九大の原先生のPDFにもあります)
だから、確率99%は無理で�
822:キよ (参考) https://ja.wikipedia.org/wiki/%E7%A2%BA%E7%8E%87%E3%81%AE%E5%85%AC%E7%90%86 コルモゴロフの公理は、1933年にアンドレイ・コルモゴロフが導入した、確率論の基礎となる公理である[1]。 (引用終り) 以上
823:132人目の素数さん
22/05/10 01:43:37.55 s7ocdL6s.net
ペテン師は出題者の視点ばかりに固執しているが、
ここで一度、ペテン師自身が回答者になってみればよい。
ペテン師が行える行動は「 1,2,…,100 の中から好きな整数を1つ選ぶ 」
という行動のみである(時枝戦術で回答者が行う行動とは、そういうものである)。
ここでは、ペテン師を分身の術によって100人に増やし、
それぞれのペテン師に背番号1から背番号100までを与えることにする。
そして、背番号 k のペテン師は番号 k を選ぶものとする。
すると、時枝戦術により、ハズレを引くペテン師は100人の中で高々1人であり、残りの99人は当たる。
ところが、ペテン師の屁理屈によれば、「100人全てがハズレ」ということになる。
ここがペテン師の限界。ペテン師は間違っている。
824:132人目の素数さん
22/05/10 08:30:13 NrARVM0w.net
>>770
>初期設定は、”可算無限個の箱に入った実数の集合R^N”で、ここを出発点として
> ”無限個の実数が与えられ,一個を除いてそれらを見た上で,除いた一個を当てよ”
> ↓
> ”確率99%で勝てそうな戦略を供する”
補足します
(参考)
純粋・応用数学(含むガロア理論)8 より
スレリンク(math板:405番)
数学セミナー201511月号P37 時枝記事より
n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって,
その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,
当てられっこないではないか--他の箱から情報は一切もらえないのだから.
(引用終り)
現代数学では、X1,X2,X3,・・・の無限族は存在します!w(下記)
<>>770より再録>「現代数学の確率論の中で、n→∞ とすることができる。結果は上記同様です(分からないなら大学レベル確率論の本で、n→∞に関する記述を調べてください。>>760の九大の原先生のPDFにもあります)」
825:132人目の素数さん
22/05/10 20:01:17.84 s7ocdL6s.net
>>772
ペテン師は出題者の視点ばかりに固執しているが、
ここで一度、ペテン師自身が回答者になってみればよい。
ペテン師が行える行動は「 1,2,…,100 の中から好きな整数を1つ選ぶ 」
という行動のみである(時枝戦術で回答者が行う行動とは、そういうものである)。
ここでは、ペテン師を分身の術によって100人に増やし、
それぞれのペテン師に背番号1から背番号100までを与えることにする。
そして、背番号 k のペテン師は番号 k を選ぶものとする。
すると、時枝戦術により、ハズレを引くペテン師は100人の中で高々1人であり、残りの99人は当たる。
ところが、ペテン師の屁理屈によれば、「100人全てがハズレ」ということになる。
ここがペテン師の限界。ペテン師は間違っている。
826:132人目の素数さん
22/05/10 22:54:13.00 tcV1M8Wj.net
ペテン師100人が全員ハズレを引くことは不可能ですね
少なくとも99人のペテン師については自分の列の決定番号が単独最大でないはずなので
D番目の箱の中身を代表列のD項目の値で答えれば必ず当たるはずですから
なんでこんな簡単なことが6年がかりで理解できないんですかね
中卒だから?
827:132人目の素数さん
22/05/11 11:52:09.29 37dK0iQC.net
>>773-774
違いますよ
私の立場は、大学レベルの確率論の視点から見て
時枝氏の記事の解法は、可測性を破っているってことです
(出題者とか回答者とか、関係ないですよ)
828:132人目の素数さん
22/05/11 12:31:15.09 ZSyjzuHC.net
>>775
当たる確率がゼロなら、対応する事象はルベーグゼロ集合であり、特に可測である。
つまり、「当たる確率はゼロだ」と主張するペテン師こそ可測性を破っている。
829:132人目の素数さん
22/05/11 12:38:09.45 ZSyjzuHC.net
>>775
>(出題者とか回答者とか、関係ないですよ)
出題者も回答者も関係ないと言いつつ、ペテン師は出題者の視点ばかりに固執している。
ここで一度、ペテン師自身が回答者になってみればよい。
何度も言うが、分身の術によって、ペテン師を100人に増やすのである。
すると、時枝戦術により、ハズレを引くペテン師は100人の中で高々1人であり、残りの99人は当たる。
可測性の話が出てくるのは確率空間を設定した場合であるが、今回は
「100人の中で高々1人しかハズレを引かない」
という、確率空間を全く設定しない記述の仕方を採用しているので、
可測性がどうこうというイチャモンのつけ方は意味をなさない。
ここがペテン師の限界。ペテン師は間違っている。
ま、時枝記事も、無暗に確率なんぞ持ち出さずに、
最初からこちらの書き方をすればよかったのにね。
830:132人目の素数さん
22/05/11 22:54:58.26 FfNSo8sG.net
100人中2人以上がハズレを引くためには、単独最大決定番号の列が2列以上必要
中卒はそんなことも分からないのか?
831:132人目の素数さん
22/05/12 00:32:18 JVDK4B8T.net
>>776-778
分かってないね
1)下記 九大原先生
「標本空間が無限の場合は大抵の根元事象の確率はゼロであり(でなければ確率の和 が 1 にならない!)」とあるよ
ここで、標本空間はΩで 全事象のことです
2)全事象Ωの確率は 1 でなければならない。P は確率測度の公理を満たすように定める必要がある。
3)それで、>>764に記したように、初期設定はΩ=R^Nです。
ルベーグ測度で、「1点のみの測度 0」です。でなければ確率の和 が 1 にならない
4)時枝記事でおかしいのは
a)初期設定はΩ=R^N(連続濃度の可算無限個の積)だったのに、それを Ωが有限の集合(元が100個)に落としている。測度論的におかしい
b)ルベーグ測度で、「1点のみの測度 0」です。例えば、区間[0,1]の実数をランダムに選んだとすると、区間[0, 0.5]に入る確率は0.5ですが、「1点のみの測度 0」です
もし、1点に確率99%(=0.99)つまり、0以外の測度を与えると、「確率の和 が 1 にならない!」(下記 原のP2、及び ルベーグ測度の記載通り)
よって、時枝記事は 測度論として成り立っていない。
(参考)
URLリンク(www2.math.kyushu-u.ac.jp)
原隆(数理物理学)のホームページ 九大
URLリンク(www2.math.kyushu-u.ac.jp)
確率論 I,確率論概論 I Last modified: October 08, 2002
URLリンク(www2.math.kyushu-u.ac.jp)
確率論 I, 確率論概論 I 講義のレジュメをまとめたもの (2002.10.08)
P1
定義 1.1.1 (標本点と標本空間,有限バージョン) 一回の実験の結果として起こりうるものを根元事象または標本
点と呼ぶ.標本点の全体からなる集合を標本空間(sample space)Ω と言う.
サイコロの例では,根元事象は E1, E2, E3,...,E6 のどれか(ここで Ej はサイコロの j の目が出ると言う
こと)であり,標本空間は {E1, E2,...,E6} である.
つづく
832:132人目の素数さん
22/05/12 00:32:34 JVDK4B8T.net
>>779
つづき
P2
さて,上のように決めた「それぞれの事象の確率」はどんな性質を満たしているだろうか?上では根元事象から
確率を決めたが,そうでない場合 - つまり,根元事象の和事象である色々な事象の確率から決めた方が楽な場合
- も(後で)出てくる.特に,標本空間が無限の場合は大抵の根元事象の確率はゼロであり(でなければ確率の和
が 1 にならない!)
URLリンク(ja.wikipedia.org)
確率論
基礎概念の概略
標本空間
(確率論においては)空集合でない集合。Ω と書く。意味としては、起こりうる結果全体の集合である。Ω の元 ω それぞれには起こりやすさの割合が備わっていることを仮定する。
確率測度
各事象に対して 0 以上 1 以下の数を対応させる関数を確率測度といい P と書き、事象 A の確率は P(A) となる。Ω 自体は常に全事象と呼ばれる事象であり、全事象の確率は 1 でなければならない。P は確率測度の公理を満たすように定める必要がある。
URLリンク(ja.wikipedia.org)
ルベーグ測度
例
・可算集合のルベーグ測度は必ず 0 である。
・両端点のみからなる二元から成る集合 {a, b} の測度が 0
(当然、1点のみの測度 0 )
(引用終り)
以上
833:132人目の素数さん
22/05/12 04:05:55.21 NMjlhEuS.net
>>779
> a)初期設定はΩ=R^N(連続濃度の可算無限個の積)だったのに、それを Ωが有限の集合(元が100個)に落としている。測度論的におかしい
Ω=R^N は出題者の視点から見たときの標本空間にすぎない。
回答者の視点から見たときの標本空間は Ω={1,2,…,100} である。
結局、ペテン師は出題者の視点に固執し続けている。
何度も言っているだろう。ペテン師が回答者になってみろと。
そして、ペテン師が回答者になった場合、ペテン師がすべきことは
「1~100の中から好きな自然数を1つ選ぶ」という行動であり、
このような行動を記述するときの標本空間は明らかに Ω={1,2,…,100} である。それなのに、
・ ペテン師は一向に 1~100 の中から自然数を 選 び た が ら な い 。
・ ペテン師は可算無限個の箱に実数を入れたがる。
つまり、ペテン師は出題者の視点に固執している。
ペテン師は一向に回答者になりたがらない。
ここがペテン師の限界。ペテン師は間違っている。
834:132人目の素数さん
22/05/12 04:12:50.37 NMjlhEuS.net
ちなみに、何度も言うが、ペテン師を100人に増やせば、全てのケースが一括で網羅できるので、
回答者の方では確率空間を全く使わずに時枝戦術が記述できるようになり、
「100人のペテン師の中で高々1人しかハズレを引かない」
という結論を得る。この書き方の場合、可測性がどうこうとか、
確率空間を有限集合にすり替えているとか、そのようなイチャモンは通用しなくなる。
ところが、ペテン師の屁理屈によれば、「100人すべてがハズレ」ということになる。
ここがペテン師の限界。ペテン師は間違っている。
835:132人目の素数さん
22/05/12 06:11:37.85 a69RyCK0.net
>>779-780
高校数学の質問スレからの「転進」 ご苦労様でした
836:132人目の素数さん
22/05/12 10:00:21.26 mR04GkmJ.net
>>783
ご挨拶ありがとうございます
実は このスレの>>765 の ID:IbQ7wXmC を辿って
高校数学の質問スレ 460 の ID:IbQ7wXmC
「底が
837:正の数で指数が複素数の時が理解出来てるなら、底が複素数もそのまま理解できてるはず 出来てないなら、指数が複素数から勉強し直せ」 に行きました 言い草が、>>765とそっくりなのと 書いていることが、ちょっとおかしいし 対数関数を複素数に拡張する話は、私も高校時代に数学教師に質問したことがありまして なので、高校数学の質問スレに一言書きました (あのままだと、議論がおかしな方向に行っていましたので)
838:132人目の素数さん
22/05/12 10:09:57.07 mR04GkmJ.net
>>781-782
>Ω=R^N は出題者の視点から見たときの標本空間にすぎない。
>回答者の視点から見たときの標本空間は Ω={1,2,…,100} である。
前者のΩ=R^N は、時枝氏の初期設定”可算無限個の箱に入った実数の集合R^N”から従います
これが、出発点です
後者の「標本空間は Ω={1,2,…,100} である」には、可測性を保ったままで
Ω=R^N → Ω={1,2,…,100} と出来るという 数学的証明がありません!
というか、そんなの数学的には無理でしょ
839:132人目の素数さん
22/05/12 16:40:38 NMjlhEuS.net
>>785
何度も言うが、ペテン師を100人に増やせば、全てのケースが一括で網羅できるので、
確率空間を全く使わずに時枝戦術が記述できるようになり、
「100人のペテン師の中で高々1人しかハズレを引かない」
という結論を得る。この書き方の場合、可測性がどうこうとか、
確率空間を有限集合にすり替えているとか、そのようなイチャモンは通用しなくなる。
ところが、ペテン師の屁理屈によれば、「100人すべてがハズレ」ということになる。
ここがペテン師の限界。ペテン師は間違っている。
840:132人目の素数さん
22/05/12 16:57:43.79 NMjlhEuS.net
ペテン師の主張は「当たるわけがない」という結論ありきなので、
(1) 1人の回答者が確率的に言い当てる
(2) 100人の回答者が全てのケースを一括で網羅する
のどちらの設定でも、ペテン師は「当たるわけがない」と主張することになる。
時枝記事は(1)の書き方を採用しており、ペテン師は(1)にツッコミを入れている。
しかし、ペテン師は(2)には全くツッコミを入れない。
そこがペテン師の限界だと言っているのである。
ペテン師は「可測性が保たれないから当たらない」と言っているが、それは違う。
可測性を保っていても、もし計算結果が「当たらない」を示唆しているのなら、
ペテン師は手のひらを返して「可測性は保たれるが、しかし当たらない」と主張する。
なぜなら、ペテン師の主張は「当たるわけがない」という結論ありきだからだ。
当たらないという結論が導かれるのであれば、平気でそこに飛びつく。
ダブルスタンダードだろうが何だろうが、そこに飛びつく。
だったら、同じく「当たらない」はずの(2)について、なぜペテン師は完全スルーしているのか?
そこがペテン師の限界。
841:132人目の素数さん
22/05/12 17:04:34.44 NMjlhEuS.net
ちなみに、Ωの差し替えに関するペテン師の間違いについては、
次のように考えれば分かりやすい。
< > をガウス記号とする。また、箱が1つだけ与えられている。
出題者は、x∈[0,1] をランダムに1つ選び、<x+0.5> の値を箱の中に入れる。
回答者は、箱の中身を言い当てなければならない。ただし、箱の中身が
「何らかの x∈[0,1] に対する <x+0.5> である」ことを予め知っているものとする。
明らかに、箱の中身は 0,1 のいずれかである。
そこで、回答者は 0,1 の2つの数から好きな数を選んで、それを回答として提示する。
すると、回答者が正解する確率は 1/2 である。
・・・この議論に関して、ペテン師は次のように言うのである。
「出発点は Ω=[0,1] であり、このΩは実無限集合である。
しかし、回答者のターンになると、Ω={0,1} と有限集合に差し替えられている。
そんなのはインチキだ。」
実際には、インチキでも何でもない。ペテン師が間違っているだけ。
842:132人目の素数さん
22/05/12 17:13:07.00 yw0iks1X.net
>>788
それx∈[0,1]じゃなくてx∈[0,0.5001]だと1/2って結論にならん気がするんだが
843:132人目の素数さん
22/05/12 17:25:57.96 NMjlhEuS.net
>>789
何が言いたいのか意味不明。
設定を変えれば結論が変わるのは当たり前。
こちらが提示した設定は「出題者は x∈[0,1] をランダムに1つ選ぶ」というものであって、
「出題者は x∈[0,0.5001] をランダムに1つ選ぶ」というものではない。
この時点で、君の指摘はナンセンス。
また、仮に設定を変えても、それに対応した結論を新たに用意すればいいだけの話で、>>788の根幹である
>「出発点は Ω=[0,1] であり、このΩは実無限集合である。
> しかし、回答者のターンになると、Ω={0,1} と有限集合に差し替えられている。
> そんなのはインチキだ。」
というペテン師の欺瞞を暴く構図に変化は生じない。
全体として、>>789が何を言いたいのか意味不明。
844:132人目の素数さん
22/05/12 17:30:20.27 NMjlhEuS.net
>>789
さらにツッコミを入れると、お望みのとおり
「出題者は x∈[0,0.5001] をランダムに1つ選ぶ」
という設定に変更しても、回答者は 0,1 から
845:ランダムに数を選んで回答として提出するので、 回答者が正解する確率は 1/2 のままだよ。
846:132人目の素数さん
22/05/12 22:08:35.40 Os52xkLm.net
>>785
>Ω=R^N は、時枝氏の初期設定”可算無限個の箱に入った実数の集合R^N”から従います
もしそうだとしたら
「勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け.
勝つ戦略はあるでしょうか?」
ではなく
「勝負のルールはこうだ. もしすべての箱の中の実数を 当 て ず っ ぽ う で ピタリと言い当てたら,あなたの勝ち. さもなくば負け.
あ な た は 勝 て る でしょうか?」
となるが、中卒でも分かるくらい自明に"NO"であり、数学セミナーの記事になるはずがない。
自分の妄想こそ正しいと信じ込む中卒に数学は無理
847:132人目の素数さん
22/05/12 22:11:01.34 Os52xkLm.net
100人のペテン師全員がハズレを引くということは
100列すべてが単独最大決定番号を持つということである
中卒に数学は無理
848:132人目の素数さん
22/05/13 08:00:37.34 Bui+Ni4w.net
>>786
>確率空間を全く使わずに時枝戦術が記述できるようになり、
そんなのムチャクチャで、
現代数学の確率論から外れていますよ
実際、>>772より再録
(参考)
純粋・応用数学(含むガロア理論)8 より
スレリンク(math板:405番)
数学セミナー201511月号P37 時枝記事より
n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって,
その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,
当てられっこないではないか--他の箱から情報は一切もらえないのだから.
(引用終り)
とあるように、時枝氏も、ちゃんと現代数学 確率論の確率変数Xを使って
”その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,
当てられっこないではないか--他の箱から情報は一切もらえないのだから.”
と論じています
849:132人目の素数さん
22/05/13 08:57:07.90 ISbFbGqJ.net
>>794
100人のペテン師を用意する。
任意の s∈R^N に対して、背番号kのペテン師は番号kを選び、
この k と決定番号 d(s) から箱の中身を回答する。
この回答は s と k に依存して決まるので、ans(s,k) と書くことにする。
従って、任意の s∈R^N に対して、100通りの回答 ans(s,1), ans(s,2), …, ans(s,100) が一括で得られる。
念のため、回答の仕方を具体的に確認しておく。
まず、s を100列に分割する。i列目は s^i と表記することにする。背番号kのペテン師は、次のように回答する:
第1列~第(k-1) 列,第(k+1)列~第100列の箱を全部開ける.
第k列の箱たちはまだ閉じたままにしておく.
開けた箱に入った実数を見て,代表の袋をさぐり, s^1~s^(k-1),s^(k+1)~s^100の決定番号のうちの最大値Dを書き下す.
いよいよ第k列の(D+1)番目から先の箱だけを開ける:s^k(D+l), s^k(D+2),s^k(D+3),・・・.
ここから、s^k に関する代表 r=r(s^k) が取り出せる。そこで、
「第k列のD番目の箱に入った実数はrDである」と回答する。
従って、回答 ans(s,k) は、具体的には
ans(s,k):=「第k列のD番目の箱に入った実数はrDである」
という文章として定義されることになる。
850:132人目の素数さん
22/05/13 08:58:48.39 ISbFbGqJ.net
そして、以上の表記のもとで、次が成り立つ。
∀s∈R^N s.t. ans(s,1), ans(s,2), …, ans(s,100) の100個の回答のうち、正しくない回答は高々1個.
ほらね、100人バージョンだと、確率論を全く設定せずに記述が終わってる。
851:132人目の素数さん
22/05/13 09:04:09.06 ISbFbGqJ.net
ちなみに、同様の記述は、より初等的な>>788でも使える。
確率版の788:< > をガウス記号とする。また、箱が1つだけ与えられている。
出題者は、x∈[0,1] をランダムに1つ選び、<x+0.5> の値を箱の中に入れる。
回答者は、箱の中身を言い当てなければならない。ただし、箱の中身が
「何らかの x∈[0,1] に対する <x+0.5> である」ことを予め知っているものとする。
明らかに、箱の中身は 0,1 のいずれかである。そこで、回答者は 0,1 の2つの数から
ランダムに数を選んで、それを回答として提示する。すると、回答者が正解する確率は 1/2 である。
確率を使わない788:< > をガウス記号とする。また、箱が1つだけ与えられている。
出題者は、x∈[0,1] を任意に1つ選び、<x+0.5> の値を箱の中に入れる。
回答者は、箱の中身を言い当てなければならない。ただし、箱の中身が
「何らかの x∈[0,1] に対する <x+0.5> である」ことを予め知っているものとする。
明らかに、箱の中身は 0,1 のいずれかである。そこで、回答者を2人に増やし、
背番号kの回答者は k を回答として提出する(k=0,1)。
すると、2人の回答者のうち、片方は正解し、もう片方は不正解になる。つまり、
∀x∈[0,1] s.t. 2人の回答者のうち、片方は正解し、もう片方は不正解
が成り立つ。
・・・ペテン師はこのような記述に一体なんの不満があるというのか?
852:132人目の素数さん
22/05/14 01:57:54.86 wB2I5jfx.net
>>794
>そんなのムチャクチャで、
100人のペテン師それぞれが1列ずつ選ぶのがなんでムチャクチャなの?バカなの?
>現代数学の確率論から外れていますよ
そりゃそーだ、確率を排除してるんだから。バカなの?
853:132人目の素数さん
22/05/14 01:59:33.55 wB2I5jfx.net
バカは「当てられっこない」という結論ありきで完全に思考停止になってるな
854:132人目の素数さん
22/05/14 10:05:39.27 mtksCKPz.net
>>794
>時枝氏も、ちゃんと現代数学 確率論の確率変数Xを使って
>”その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,
>当てられっこないではないか--他の箱から情報は一切もらえないのだから.”
>と論じています
これ、条件付き確率で、時枝氏の論法不成立が説明出来そうですね
つまり、下記の条件付き確率で
事象 B:ある決定番号d=n >>14 が得られた
事象 A:決定番号を使って、100列の箱のある箱の数を99%の確率で的中できる
そうすると
P(A∩B)=P(A|B)P(B) と、積の形になる
いま、P(B)は ”s = (s1,s2,s3 ,・・・sn),s'=(s'1, s'2, s'3,・・・s'n )∈R^nで,ある番号から先のしっぽが一致する番号”>>14 です。
いま、簡単に各 si たちに、サイコロの1~6の目を入れるとする。二つの箱の目が一致する確率pは、p=1/6で、n個の箱なら1/6^nで、箱が無限個だと 1/6^n→0です
つまり、P(B)=0です
だから、P(A∩B)=P(A|B)P(B)=P(A|B)・0=0です
P(A|B)=99%であっても、P(A∩B)=0 です
上記は、サイコロでp=1/6でしたが、コイントスならp=1/2で、同じく p^n→0 です。0<=p<1である限り、p^n→0 です。
なので、このとき常に P(A∩B)=0 ですね
これが、一番分かり易い説明でしょうか
(参考)
URLリンク(ja.wikipedia.org)
条件付き確率
ある事象 B が起こるという条件下での別の事象 A の確率のことをいう。条件付き確率は P(A|B) または PB(A) のように表される[1]。条件付き確率 P(A|B) はしばしば「B が起こったときの A の(条件付き)確率」「条件 B の下での A の確率」などと表現される。
定義
A および B を事象とし、P(B) > 0 とすると、B における A の条件付き確率は
P(A∩B)=P(A|B)P(B)
により定義される[2][3]。
(引用終り)
以上
855:132人目の素数さん
22/05/14 10:07:53.52 mtksCKPz.net
>>800
補足
1)箱が可算無限個というのが、トリックのネタですね
2)あたかも、クラスでトップ10位以内が、クラスの人数が増えるほど、難しくなることに類似する
3)クラス30人なら上位1/3だが、100人なら上位1割・・、クラスが可算無限ならば トップ10位は比率では0になる
4)あたかも、決定番号d=1とか「それって、ナンバーワンじゃん。奇跡だよ!!」ですが、可算無限個だと d=1も100も1000も同じです
(この話では、よく混同されるのが、特定のnの話と、決定番号が全体として自然数の集合であることとの混同です。
下記 原先生の ”標本空間が無限の場合は大抵の根元事象の確率はゼロであり(でなければ確率の和が 1 にならない!)”です。
つまり、個別事象(根元事象)の確率が0であるのは、標本空間が無限の場合にはよくあることです。)
(参考)>>779-780より
URLリンク(www2.math.kyushu-u.ac.jp)
確率論 I, 確率論概論 I 講義のレジュメをまとめたもの (2002.10.08) 原隆 九大 より
P2
さて,上のように決めた「それぞれの事象の確率」はどんな性質を満たしているだろうか?上では根元事象から
確率を決めたが,そうでない場合 - つまり,根元事象の和事象である色々な事象の確率から決めた方が楽な場合
- も(後で)出てくる.特に,標本空間が無限の場合は大抵の根元事象の確率はゼロであり(でなければ確率の和
が 1 にならない!)
(引用終り)
以上
856:132人目の素数さん
22/05/14 10:31:07.82 tJ3OxTbK.net
>>800-801
だから、結局それで時枝戦術が「当たらない」のであれば、
100人バージョンでは「100人ともハズレ」ということになる。
つまり、ペテン師は
・ ∀s∈R^N s.t. ans(s,1), ans(s,2), …, ans(s,100) の100個の回答は 全 て 不 正 解
と主張することになる。しかし、実際には
・ ∀s∈R^N s.t. ans(s,1), ans(s,2), …, ans(s,100) の100個の回答のうち、正しくない回答は高々1個
が成り立つ。
このことはペテン師も既に理解しており、ペテン師にとって都合が悪い。
従って、ペテン師は確率論を使わないバージョンを「完全スルーする」という情けない戦略を取っている。
実際、ペテン師は>>795-797を完全スルーしている。
ここがペテン師の限界。
857:132人目の素数さん
22/05/14 10:39:56.82 tJ3OxTbK.net
ペテン師の一番の問題は、「当たるはずがない」という結論ありきな姿勢であること。
ペテン師は確率論を使った記述に固執しているが、仮に確率論を使わない記述でも、
そこでの結論がもし「当たらない」なのであれば、ペテン師は手のひらを返してそれに飛びつく。
そして、ペテン師はウキウキで次のように主張することになる。
「確率論を使わない方式でも確かに記述できるが、それでも結局は当たらないことが証明される。
ほら、やっぱり当たらないじゃないか」
実際には、確率論を使わないバージョンでは「当たる」ことが明確に分かってしまう。
ペテン師もそのことは既に理解していて、ペテン師にとって都合が悪い。
そのため、ペテン師は確率論を使わないバージョンを完全スルーしている。
つまり、確率論を使うか否かが問題なのではなく、
単にペテン師が結論ありきなのが問題なのである。
・ ペテン師のお気に入りの結論が得られるなら、確率論を使うか否かに関わらずそれに飛びつく。
・ 逆に、ペテン師にとって都合が悪い結論なら、ペテン師は完全スルーする。
この結論ありきな姿勢がペテン師の問題なのであり、そこがペテン師の限界である。
858:132人目の素数さん
22/05/14 10:39:56.89 wB2I5jfx.net
>>800
>いま、簡単に各 si たちに、サイコロの1~6の目を入れるとする。二つの箱の目が一致する確率pは、p=1/6で、n個の箱なら1/6^nで、箱が無限個だと 1/6^n→0です
>つまり、P(B)=0です
いいえ、ある列sとその代表列rは同値なので決定番号以降の項は確率1
859:で一致しています。つまり、P(B)=1です 当てられっこないという結論ありきで思考停止になってますね。
860:132人目の素数さん
22/05/14 10:52:11 wB2I5jfx.net
>>801
>下記 原先生の ”標本空間が無限の場合は大抵の根元事象の確率はゼロであり(でなければ確率の和が 1 にならない!)”です。
時枝戦略の標本空間は下記引用から簡単に分かる通り {1,2,…,100} なる有限集合なのでまったく的外れですよ?
「さて, 1~100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない.」
861:132人目の素数さん
22/05/14 10:55:30.84 wB2I5jfx.net
相変わらずペテン師は持論を繰り返すばかりでいっこうに記事のどこがどう間違っているのか言おうとしない
時枝戦略が不成立なら記事のどこかに間違いがあるはずなのに
862:132人目の素数さん
22/05/15 09:39:20.47 ha5+SNG2.net
>>800-801 補足
(参考)再録
URLリンク(www2.math.kyushu-u.ac.jp)
確率論 I, 確率論概論 I 講義のレジュメをまとめたもの (2002.10.08) 原隆 九大 より
P2
さて,上のように決めた「それぞれの事象の確率」はどんな性質を満たしているだろうか?上では根元事象から
確率を決めたが,そうでない場合 - つまり,根元事象の和事象である色々な事象の確率から決めた方が楽な場合
- も(後で)出てくる.特に,標本空間が無限の場合は大抵の根元事象の確率はゼロであり(でなければ確率の和
が 1 にならない!)
(引用終り)
1)要するに、”標本空間が無限の場合は大抵の根元事象の確率はゼロであり(でなければ確率の和が 1 にならない!)”
なので、標本空間が無限の場合は、確率0以外を与えてはいけない事象があるってことです
2)それが、時枝記事の決定番号 d=n です(>>14)
3)そもそも、任意の実数rを箱に入れるとき、その箱の数と 他の箱の数r'が一致する確率は0です((非可算)無限分の1)
二つの無限数列で、あるnより先のしっぽの箱内の数が、全て一致しなければ、決定番号 d=n になりません。あるnより先の箱は可算無限個です
可算無限個の2列の箱の中の実数が、全て一致する確率は0です。(箱一つでも、一致確率0ですから、可算無限個ならなおさらです)
4)つまり、>>800の条件確率 P(B) =0
です
だから、決定番号 d=n になる条件のもとで、99%でも
全体としての確率は、その積 99%・0=0 となります
なぜ、時枝論法が不成立なのか?
これが、一番分かり易い説明と思います。
863:132人目の素数さん
22/05/15 10:14:18.39 Vj4RNic7.net
>>807
>3)そもそも、任意の実数rを箱に入れるとき、その箱の数と 他の箱の数r'が一致する確率は0です((非可算)無限分の1)
> 二つの無限数列で、あるnより先のしっぽの箱内の数が、全て一致しなければ、決定番号 d=n になりません。あるnより先の箱は可算無限個です
> 可算無限個の2列の箱の中の実数が、全て一致する確率は0です。(箱一つでも、一致確率0ですから、可算無限個ならなおさらです)
>4)つまり、>>800の条件確率 P(B) =0
> です
数列 0,0,0,… と数列 1,0,0,… は第二項以降一致しているので確率1で決定番号=2ですが?
なぜ、あなたの持論は間違いなのか?
これが、一番分かり易い説明と思います。
持論ではなく、記事のどこに間違いがあるのか早く言ってもらえませんか?
864:132人目の素数さん
22/05/15 10:19:48.69 gTS5u0dD.net
確率論を使わない100人バージョンでも「全員ハズレ」であることが証明されるなら、
ペテン師は手のひらを返してそれに飛びつく。
そして、ペテン師はウキウキで次のように主張する。
「100人バージョンは確率論を使わない方式になっているが、
それでも結局は全員ハズレであることが証明される。
ほら、やっぱり当たらないじゃないか」
しかし、ペテン師はこのような主張を一切せず、今回も完全スルーである。
それはなぜか?
簡単だ。ペテン師は、100人バージョンだと「当たる」ことを明確に理解しているからだ。
このことはペテン師にとって都合が悪いので、ペテン師は100人バージョンを完全スルーするしかない。
そこがペテン師の限界。
865:132人目の素数さん
22/05/15 10:40:53.32 Vj4RNic7.net
>>807
あなたは同値関係・同値類を理解していないようですね。
代表列の決め方は確率事象ではありませんよ?
1.「s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈R^Nは,ある番号から先のしっぽが一致する∃n0:n >= n0 → sn= s'n とき同値s ~ s'と定義しよう」により定義される~は集合R^N上の同値関係である Y/N
2.集合上に同値関係を定めたとき、その集合は同値分割される Y/N
3.ある一つの同値類に属すどの2元s,s'も同値s~s'である Y/N
4.ある一つの同値類に属すどの元をその類の代表元に選んでも良い Y/N
5.選択公理を仮定すればR^N/~の完全代表系が存在する Y/N
6.任意の実数列の決定番号は(確率1で)自然数である Y/N
あなたはどこで躓いてるのですか?
866:132人目の素数さん
22/05/15 10:48:12.86 gTS5u0dD.net
>そもそも、任意の実数rを箱に入れるとき、その箱の数と 他の箱の数r'が一致する確率は0です((非可算)無限分の1)
>二つの無限数列で、あるnより先のしっぽの箱内の数が、全て一致しなければ、決定番号 d=n になりません。あるnより先の箱は可算無限個です
番号kを選んだときの回答者は、次のように回答する。
(1) 第1列~第(k-1) 列,第(k+1)列~第100列の箱を全部開ける. 第k列の箱たちはまだ閉じたままにしておく.
(2) 開けた箱に入った実数を見て,代表の袋をさぐり, s^1~s^(k-1),s^(k+1)~s^100の決定番号のうちの最大値Dを書き下す.
(3) 第k列の(D+1)番目から先の箱を開ける:s^k(D+l), s^k(D+2),s^k(D+3),・・・. ここから、s^k に関する代表 r=r(s^k) が取り出せる。
(4) そこで、「第k列のD番目の箱に入った実数はrDである」と回答する。
(1),(2)では、第k列以外の全ての列について
「最初から全ての箱を開封してしまう」…(a)
ので、完全代表系の中から、それぞれの列に対する代表を回答者は確率1で取り出せる。もしここで、
・ 取り出すべき代表が、完全代表系の中から いちいちランダムに選ばれる
のならば、回答者が望みの代表を得る確率は確かにゼロとなる。しかし、実際には、
・ 取り出すべき代表は、(a)で開封した全ての箱の情報をもとに、完全代表系の中から回答者が自分で正確に選ぶ
のであるから、回答者は望みの代表を確率1で取り出せる。
ここが、ペテン師の勘違いポイント。
867:132人目の素数さん
22/05/15 10:55:05.
868:58 ID:Vj4RNic7.net
869:132人目の素数さん
22/05/15 11:06:39.87 gTS5u0dD.net
1列の実数列 u=(u_1,u_2,u_3,…) が与えられていて、どの項の値も既に開示されているとする。
この状況下で、完全代表系の中から、u と同値な代表 r を取り出したいとする。
次の2つの方式を考える。
方式1:取り出すべき代表が、完全代表系の中から いちいちランダムに選ばれる。
方式2:既に開示されている u_1,u_2,u_3,… の情報をもとに、取り出すべき代表を完全代表系の中から自分で正確に選ぶ。
方式1の場合、望みの代表 r が取り出される確率はゼロである。
方式2の場合、望みの代表 r が取り出される確率は1である。
時枝戦術は方式2を採用しているのだが、ペテン師は方式1だと勘違いしている。
もし方式1なら、時枝戦術は当たりっこない。しかし、時枝戦術は方式2である。
そして、方式2と決定番号の性質を組み合わせると、時枝戦術は当たる戦術であることが分かる。
そもそも、このような考察をしなくても、確率を排除した100人バージョンなら明確に「当たる」と分かる。
ペテン師もそのことは既に理解しているので、100人バージョンは完全スルーしている。
ここがペテン師の限界。
870:132人目の素数さん
22/05/15 17:47:55.51 Vj4RNic7.net
時枝の同値関係を~と書く。実数列sが属す同値類を[s]と書く。
wikiediaの選択公理のページの
「あるいは同じことであるが、空でない集合の空でない任意の族・・・(略)・・・なるものが存在する」
の所の「空でない集合の空でない族」として R^N/~ を当てはめれば、
任意の類 ∀[s]∈R^N/~ に対して代表列 r=f([s])∈[s] を与える選択関数 f:R^N/~→R^N が存在することになる。
関数 g:R^N→R^N/~ を g(s)=[s] で定義すれば、合成関数 f・g:R^N→R^N は、任意の実数列 ∀s∈R^N に対しその代表列 r=f・g(s) を与える。
このように選択公理を仮定すれば、任意の実数列に対してその代表列を与える関数の存在が保証されるので、
いかなる実数列の決定番号も自然数であることが保証される。つまりP(B)=1。
871:132人目の素数さん
22/05/16 20:57:15.87 mfDPo8UH.net
>>807 補足
(参考)再録
URLリンク(www2.math.kyushu-u.ac.jp)
確率論 I, 確率論概論 I 講義のレジュメをまとめたもの (2002.10.08) 原隆 九大 より
P2
いくつかの注意を列挙する.
・ 上の事象の公理を満たす Sample Space にはちゃんと名前が付いている.数学ではこいつを可測空間と言う.
この場合の F とは Ω の σ-field と呼ばれる.
・ このバージョンになると,もはや 「Ω の全ての部分集合を事象と認める」とは言っていない事に注意.事象
と認めるのは Ω の σ-field F の元になっているような,特別な部分集合だけである.このような特別の部分
集合にのみ,確率を割り振るのである(以下参照).
・標本空間が無限の場合は大抵の根元事象の確率はゼロであり(でなければ確率の和が 1 にならない!)
(引用終り)
つまり、上記原の通り
・もはや 「Ω の全ての部分集合を事象と認める」とは言っていない
・事象と認めるのは Ω の σ-field F の元になっているような,特別な部分集合だけである.このような特別の部分集合にのみ,確率を割り振るのである
繰り返すが
・原 ”もはや 「Ω の全ての部分集合を事象と認める」とは言っていない事に注意”ってこと
・選択公理を使ったからといって、Ω= R^Nの部分集合として、時枝問題の事象が ”Ω の σ-field F の元になっている”か否かは別問題で、その証明がないし
・もう一つの非可測は、上記 原の ”標本空間が無限の場合は大抵の根元事象の確率はゼロであり(でなければ確率の和が 1 にならない!)”ってこと
(「確率の和が 1 にならない」=コルモゴロフの確率公理を満たさない ということなのです)
なお、>>807 での 決定番号について補足しておく
1)決定番号 d∈N は、上限を持たないのです
2)なので、ある有限の定数値Dを決めて、d <= D となるdを得る確率は 0である
3)なぜなら、決定番号 d∈N は上限を持たないから、d <= D は有限個であり、D < d は無限個であるから
従って、時枝氏の記事は、前提条件Bの確率が0である条件付き確率(>>800)を扱っており、結局的中確率は0となるのです
872:132人目の素数さん
22/05/16 21:46:30.13 dnfhJTSG.net
>>815
> 従って、時枝氏の記事は、前提条件Bの確率が0である条件付き確率(>>800)を扱っており、結局的中確率は0となるのです
Bの確率は1である。Bの確率がゼロだというのはペテン師の勘違いである(>>811, >>813)。
ここがペテン師の限界。
873:132人目の素数さん
22/05/16 21:48:07.74 dnfhJTSG.net
そして、今回もペテン師は確率を使わない100人バージョンを完全スルーしている。
もし100人バージョンでも「全員ハズレ」であることが証明されるなら、
ペテン師は手のひらを返してそれに飛びつく。そして、ペテン師はウキウキで次のように主張する。
「100人バージョンは確率論を使わない方式になっているが、
それでも結局は全員ハズレであることが証明される。ほら、やっぱり当たらないじゃないか」
しかし、ペテン師はこのような主張を一切せず、完全スルーである。
それはなぜか?
簡単だ。ペテン師は、100人バージョンだと「当たる」ことを明確に理解しているからだ。
このことはペテン師にとって都合が悪いので、ペテン師は100人バージョンを完全スルーするしかない。
874:132人目の素数さん
22/05/16 22:03:33.81 dnfhJTSG.net
< > をガウス記号とする。f:(0,1] → N を f(x):= < 1/x > と定義する。
箱が1つだけ与えられている。
出題者は、x ∈ (0,1] をランダムに1つ選び、f(x) の値を箱の中に入れる。
回答者は、箱の中身が2022未満であるか、2022以上であるかを言い当てなければならない。
ただし、箱の中身が「何らかの x∈(0,1] に対する f(x) である」ことを
予め知っているものとする。そこで、回答者は常に「2022未満である」と回答することにする。
このとき、回答者が正解する確率は 1-1/2022 であることが計算できる。
ところが、ペテン師の屁理屈によれば、次のようになる。
1)f(x) (x∈(0,1]) は上限を持たない。
2)なので、ある有限の定数値 D を決めて、f(x) < D となる f(x) を得る確率は 0 である
3)なぜなら、f(x) は上限を持たないから、f(x) < D は有限個であり、D >= f(x) は無限個であるから
4) 今回は D=2022 のケースであり、回答者は f(x) < D と回答するのだから、回答者が正解する確率は 0 である。
明らかに、ペテン師は意味の分からない勘違いをしている。
ここがペテン師の限界。
875:132人目の素数さん
22/05/17 00:21:06.55 hnPC6OlG.net
>>815
>・選択公理を使ったからといって、Ω= R^Nの部分集合として、時枝問題の事象が ”Ω の σ-field F の元になっている”か否かは別問題で、その証明がないし
「さて, 1~100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 」
を読んでΩ={1,2,…,100}だと分からないなら数学板に来ない方がいいよ 無駄だから
876:132人目の素数さん
22/05/17 00:23:23.88 hnPC6OlG.net
ペテン師くんは確率の基礎の基礎が分かってないね
小学校の教科書で「同様に確からしい」から勉強し直せば?
877:132人目の素数さん
22/05/17 00:37:33.72 85x9OUmJ.net
>>818
それはf(x)が簡単すぎる
代わりに
R^Nの尻尾同値類の代表元をまず定める
x∈(0,1]の少数部の2進数展開を求める
少数部の2進数展開は0か1の列なのでR^Nにも属する
f(x)をxの少数部の2進数展開の尻尾同値類から求めた決定番号とする
これだと回答者が正解する確率は0かほぼ0になるんじゃないかな
878:132人目の素数さん
22/05/17 01:09:11.88 kn/33od+.net
>>821
>これだと回答者が正解する確率は0かほぼ0になるんじゃないかな
的外れ。確率が普通にゼロになる具体例を提示しても意味がない。
「確率が正になるのが正解なのに、ペテン師の屁理屈だとゼロになっちゃう
(ゆえにペテン師はおかしな勘違いをしている)」
という具体例を提示することに意味がある。>>818はそういう具体例になっている。
また、「確率が正になるのが正解」であることを確かめるときに、f(x)は簡単な方がよい。
この2点において、君のやっていることは完全に的外れ。
879:132人目の素数さん
22/05/19 03:33:11.67 Hsp8/tBu.net
100人のペテン師全員が外れるためには100列の決定番号すべてが単独最大でなければならない
ペテン師は自然数の集合が全順序ではないと言いたいようだ まさにペテン
880:132人目の素数さん
22/05/21 15:21:24.23 BWLI+lHI.net
>>764
>さて次に、時枝の通り、サイコロの目の代わりに、任意の実数Rを入れて良いとします
>そうすると、初期設定は、Ω=R^N です。
Ω=R^N は実数列全体のいずれかを選ぶ場合の標本空間ですね。
時枝戦略では1~100のいずれかを選ぶので Ω={1,2,…,100} です。
「さて, 1~100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 」
と書いてあるのが読めませんか?
881:132人目の素数さん
22/05/28 17:11:53.73 9Ny85owP.net
>>817
>ペテン師は、100人バージョンだと「当たる」ことを明確に理解しているからだ。
いや、中卒ペテン師は同値類が分かってないから当たる理屈も分かってない
それがバレないように完全スルーしてるんでしょう
882:132人目の素数さん
22/06/05 00:10:46.34 lSqpFKyo.net
同値類を理解できない中卒に箱入り無数目は無理
883:132人目の素数さん
22/07/21 19:28:00.87 T5Vl2P6E.net
このスレは終了とします
2022/7/21 5ch数学板自主管理委員会
884:132人目の素数さん
22/07/23 10:54:47.42 jKXtapY1.net
箱入り無数目は成立で決着しているので終了でいいと思います
同値類も理解できない中卒の言いがかりは聞くに値しませんしね
885:132人目の素数さん
22/07/23 17:50:06.48 yaAv2wrr.net
自主管理ごっこ
ごくろうwww
886:132人目の素数さん
22/07/23 18:15:22.91 jKXtapY1.net
>>829
同値類を理解できないあなたに発言権はありませんよ?
荒らさないで下さいね
887:132人目の素数さん
22/07/24 11:55:21 34ug5Wu2.net
いまだに
箱入り無数目
の誤魔化しが
見抜けない
アホがいるwww3
888:132人目の素数さん
22/07/24 15:56:31.06 56IEsUhE.net
いまだに
同値類を
理解できない
アホがいるwww
889:132人目の素数さん
22/07/24 16:08:00.05 56IEsUhE.net
>>831
同値類の何がそんなに難しいの?
てかそれ理解できないんじゃ大学数学はほぼ全滅だね
890:132人目の素数さん
22/08/07 16:54:31.2
891:4 ID:OPHB8tRX.net
892:132人目の素数さん
22/08/07 19:58:24.13 00u8u5Ro.net
>>834
>2)決定番号に上限はない。つまり、決定番号は自然数全体を渡る
>3)このような上限がない分布では、強い減衰がないと積分が無限大に発散することはよく知られている
サルは何度言えば分かるのかな?
時枝戦略は決定番号の分布なんて使ってない。
「さて, 1~100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 」
から分かる通り、時枝戦略が使っている分布は離散一様分布。
分布が分からないなら、100人のペテン師バージョンを考えな。
100人のペテン師のうちハズレを引くのは何人?
これに答えてみなよサル
893:132人目の素数さん
22/08/07 20:21:26.62 zejRwTBx.net
>>834
>箱入り無数目の誤魔化しに、・・・非正則事前分布類似を使っている・・・
>時枝の決定番号は、n=1の一様分布どころか、あきらかに1<nであって、
>全く確率計算には使えない分布になっている
>>835
>時枝戦略は決定番号の分布なんて使ってない。
>時枝戦略が使っている分布は離散一様分布。
835が正しいね
箱入り無数目で用いてるのは「列の選択」の離散一様分布
箱の中身は確率変数ではなくハズレ列は決まっている
ただ回答者は分からないから、ハズレ列を避ける選択を
ランダムに行わなければならない それだけの話
834は何が確率変数か読み間違った 御愁傷様
894:132人目の素数さん
22/08/08 07:44:26.01 YHNRwMjd.net
>>834
(補足)
・0~mの一様分布を考える。mは十分大きいが有限の自然数とする
・この分布の平均値は、m/2だ
・この分布の確率変数Xを考える
・いま、ある自然対数a( 0< a <m )に対して、
a<Xとなる確率は、P(a<X)=(m-a)/m=1-a/m となる
・これは、mが有限のとき
・しかし、m→∞(非正則分布)のときは、このような確率計算は正当化されない!
・これが、時枝記事の確率トリックです
895:132人目の素数さん
22/08/08 08:22:56.80 MW+A2Tva.net
>>837
そもそも問題がわかってない
毎回の試行で箱の中身は入れ替えない
だから1列目がハズレなら、ずっとハズレのまま
でも、回答者はそんなこと知らないから、
100列の中からあてる列をランダムに選ぶ
だから1列目を選ぶ確率は1/100
ただそれだけの話
これが箱入り無数目の「トリック」
(「トリック」と書いたが別に嘘という意味ではない)
896:132人目の素数さん
22/08/08 08:24:49.17 MW+A2Tva.net
>>838
では、もし、毎回の試行で箱の中身を入れ替えたら?
その場合には、もはや、確率は計算できない
計算できないのだから「確率は0」とも言えない
Prussが云ってるのはそういうこと
897:132人目の素数さん
22/08/08 08:28:08.46 MW+A2Tva.net
>>839
「確率が0」になる場合
「99列の決定番号の最大値Dをとったら、それを固定したままで
1列の箱の中身を毎回入れ替えてD+1番目以降の箱を全部開けて
その都度Dの箱の中身を予測する」
898:132人目の素数さん
22/08/08 08:30:18.96 MW+A2Tva.net
>>840
「確率が1」になる場合
「1列を固定したままで、毎回99列を入れ替えて決定番号Dをとる」
899:132人目の素数さん
22/08/08 08:34:02.24 MW+A2Tva.net
>>840の場合だけ、同じ人物が毎回試行できるが
だからといって正しい設定だと主張することはできない
なぜなら同じ人物が試行しなければならないなんて決まってないから
毎回100列を入れ替えた場合、もはや確率がいくつになるかわかりようがない
「箱入り無数目」の計算は、100列を全く入れ替えないという設定によるもの
この設定があまりにも馬鹿馬鹿しいのは確かだが、そういう設定は排除できない
900:132人目の素数さん
22/08/08 20:43:11 RFKcpsqk.net
時枝戦略を否定したいなら自然数が全順序でないことを示さなければならない
なぜなら2列の決定番号は互いに相手より大きくないといけないから
はい、示してください
901:132人目の素数さん
22/08/09 05:40:50.42 Cs5xdhS9.net
もし2列の決定番号が d1>d2, d1=d2, d1<d2 のいずれかであるならハズレ列は高々一列。
2列ともハズレ列となるためには d1>d2 且つ d1<d2 であることが必要。
はい、 d1>d2 且つ d1<d2 を満たす自然数の組 d1,d2 を挙げて下さい。
902:132人目の素数さん
22/08/09 06:30:31.42 DLTsRB8/.net
もし、箱の中身を毎回入れ替える場合
箱入り無数目の戦略の確率計算通りにならないとすると
はずれ列の分布と回答者の選択が独立でないことになる
仮に確率0なら、毎回はずれ列をあてられることになる
それはそれでオカルト
903:132人目の素数さん
22/08/11 08:51:57.14 4tLnuvfp.net
ところで、箱入り無数目の方法は
箱の中身が独立でない場合にも通用する
(つまり、独立性とは関係ない)
例えば、無限個の箱に自然数の番号が書かれた玉を入れるが
自然数に対してその番号が書かれた玉は1個しかなく
したがってどれか一個の箱にしかない、としよう
(一応、どんな番号の玉もどこかの箱に入ってるとする)
この場合、箱の中身は独立ではない というのは
ある箱にある自然数が入ってたと分かった瞬間
他の箱には入ってないとわかるから
さて、実はこの場合にも箱入り無数目の方法はそのまま通用する
箱に自然数の番号がついているとして
「有限回の置換で移り変わる順列」
を同値とし、そして、
「その箱から先(大きい方向に進む)の番号の箱は
みな同値類の代表元と一致する最小の番号」
を決定番号とすればいいだけ
あ、でもこの場合、何も考えずに
「ある箱を選んで、その箱以外を全部開ける」
という方法でも、確率1で当たるかwww
904:132人目の素数さん
22/08/11 18:47:19.51 h1Lfeuh4.net
>>837
>・しかし、m→∞(非正則分布)のときは、このような確率計算は正当化されない!
>・これが、時枝記事の確率トリックです
言葉
905:が理解できる人間には 「さて, 1~100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 」 から m=100 は自明。 サルに数学は無理。まず言葉を調教してもらいなさい。
906:132人目の素数さん
22/08/11 19:12:09.27 4tLnuvfp.net
>>847
「さて, 1~n のいずれかをランダムに選ぶ.
例えばkが選ばれたとせよ.
s^kの決定番号が他の列の決定番号どれよりも大きい確率は
1/nに過ぎない. 」
上を下に置き換えても同じ
「さて, 自然数のいずれかをランダムに選ぶ.
例えばkが選ばれたとせよ.
s^kの決定番号が他の列の決定番号どれよりも大きい確率は
いかなる1/n(n∈N)よりも小さい. 」
しかし、なぜ「箱入り無数目」で
列を無限につくったら失敗するか?
それは決定番号が無限個あったら、
その中の最大値が存在するとは言えないから