21/08/21 11:20:41.14 kvCTkQ4a.net
>>51
つづき
さてここで、
1.実数体 Rを、無限小数 0.a0,a1,a2,・・→∞ とみると、 a0,a1,a2,・・には、0~9の数が入る
2.一方、a0,a1,a2,・・→∞を、時枝の箱と見ると、a0,a1,a2,には、任意の実数が入る
3.つまり、a0,a1,a2,・・を下記の形式的冪級数の係数と考えることができるのです
(上記ヴィタリにおいて、実数Rに対応するのが式的冪級数環A[[X]]で、有理数Qに相当するのが多項式環K[X]です。
下記及び前スレ スレリンク(math板:416番)-417 ご参照)
4.ヴィタリ集合は、区間[0, 1]の中にR/Qの代表を詰め込んだものだ。代表全体は不可算個ある。だから、可測か非可測かを論じることができるのです
しかし、一つの代表は、実数のただ1点にすぎないから、これは非可測ではない。明らかに、測度は0だ
5.それは、時枝でも同様。そもそも、代表100個しか使わないから、可測か非可測かを論じることが無意味
6.かつ、もっと言えば、下記形式的冪級数環A[[X]]は、無限次元ベクトル空間と見ることが出来る
そもそも、下記無限次元ベクトル空間では、ヒルベルト空間のように計量を入れないと、可測か非可測かを論じることが無意味
(ヒルベルト空間や河東ご参照)
7.時枝先生は、ヴィタリのミスリードで、2重に間違っている
(代表は有限個しか使わないし*)、R^Nには計量が そのままでは 入らないから非可測云々自身が無意味だ)
注*) 簡単な話で、数列のしっぽで、同値類の類別だけで止めておいて、代表は無しで良い
必要になったとき、100個だったら100個の代表を、そのときに取れば良い
代表全体の集合を作る必要がないから、選択公理は使わないで 済ますことができる
URLリンク(ja.wikipedia.org)
形式的冪級数
形式的冪級数全体からなる集合 A[[X]] に和と積を定義して環の構造を与えることができ、これを形式的冪級数環という。
つづく