暇つぶし2chat MATH
- 暇つぶし2ch124:132人目の素数さん
21/08/21 22:38:18.39 kvCTkQ4a.net
>>117
つづき
また,シュタインハウス[註 58] とミチェルスキは 1962 年の
論文で,現在では決定性の公理 (Axiom of Diterminacy (AD)) と呼ばれている公
理 (と選択公理以外の集合論の公理) から,すべての図形に体積が定義できること
を証明しています.この公理については,更に 1990 年代以降に大きな研究の進展
があったのですが,それについては,たとえば Kanamori [30] をご覧ください.
一方,ヴィタリによる非可測集合の構成法を思い出してみると,R が整列可能
なら,ヴィタリが構成したような非可測集合が作れることがわかります.集合論の
公理系が無矛盾なら,選択公理を集合論の公理から除いたものに,選択公理の否定
と R の整列可能性の主張を加えた体系も無矛盾であることが示せます (例えば,前
出の Kunen [33] の VII 章の演習問題 (E4) の変形でこれが示せます[註 59] ). この
体系では,選択公理は成り立たないけれど,非可測集合は存在します.
(引用終り)
以上


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch