暇つぶし2chat MATH
- 暇つぶし2ch116:132人目の素数さん
21/08/21 19:57:11.13 kvCTkQ4a.net
>>106 ついで
”「どのようなグループ分け(同値関係による商集合)に 対しても, 必ず 代表系を選び出すことができる」ということを主張しているのが 選択公理である”(山上 滋)
URLリンク(sss.sci.ibaraki.ac.jp)
証明する上で必要な集合論の諸概念 Yamagami Shigeru 平成15年2月14日
「バナッハ・タルスキーのパラドックス」を証明する上で必要と なる, 集合論の知識をあげておく.
同値類全体の集合を, 集合$X$の同値関係~による 商集合といい, $X/~$
と書く. 同値類$C$に属する各元を$C$の代表という.
選択公理(ツェルメロ)
集合$X$が, 空でない部分集合の族に分割されているとする. このとき, 各部
分集合から一つずつ要素を選び出して, それらを集めることにより, 一つの
集合を作ることができる.
これは, 選択公理と呼ばれるもので, 非常に便利なの だが, この公理の妥当
性に関しては種々の議論がある. しかし, 数学的に 重要な数々の定理の証明に
この公理を用いる. 一方で, この公理を仮定したが ために, 直観的には自然で
ないような定理も得られてしまう. 「バナッハ・タルスキーのパラドックス」 もそのような定理の一つといえる.
「バナッハ・タルスキーのパラドックス」の 証明において, 選択公理は必要不可欠であるので, 選択公理 について, もう少しだけ説明しておくことにする.
同値関係によって作られる同値類 とは, 簡単に言うと, 同じ性質を 持つもの同士のグループのことである. そして, これによって現れる グループの全体を (同値関係による)商集合と呼ぶので ある. また, 各グループの代表を集めたものを代表系 (または選択集合)と呼ぶ.
「どのようなグループ分け(同値関係による商集合)に 対しても, 必ず 代表系を選び出すことができる」ということを主張しているのが 選択公理である. これは直観的に明らかに 見えるのだが, なかなか奥が 深い. 一例として, 非可測集合の存在があげられる.
実数全体 Rに~を
x~ y ⇔ x-y が有理数
とおくと, 各同値類は, 有理数全体 Qを与えられた 実数だけずらしたものに なっていて, そのグループ分けは直観的に 把握できるような類いのものでは ない.
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch