箱入り無数目を語る部屋2at MATH
箱入り無数目を語る部屋2 - 暇つぶし2ch116:, 各グループの代表を集めたものを代表系 (または選択集合)と呼ぶ. 「どのようなグループ分け(同値関係による商集合)に 対しても, 必ず 代表系を選び出すことができる」ということを主張しているのが 選択公理である. これは直観的に明らかに 見えるのだが, なかなか奥が 深い. 一例として, 非可測集合の存在があげられる. 実数全体 Rに~を x~ y ⇔ x-y が有理数 とおくと, 各同値類は, 有理数全体 Qを与えられた 実数だけずらしたものに なっていて, そのグループ分けは直観的に 把握できるような類いのものでは ない. つづく




次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch