Inter universal geometryとABC予想(応援スレ)at MATHInter universal geometryとABC予想(応援スレ) - 暇つぶし2ch■コピペモード□スレを通常表示□オプションモード□このスレッドのURL■項目テキスト700:現代数学の系譜 雑談 21/09/26 00:17:02.42 4AZ2wKQ6.net >>633 >フェセンコも感覚が麻痺してるのかもね... いや、フェセンコが書いている半分以上は、下記の”Anabelian geometry en.wikipedia”そのもの つまり”Anabelian geometry can be viewed as one of generalizations of class field theory. Unlike two other generalizations ? abelian higher class field theory and representation theoretic Langlands program ? anabelian geometry is highly non-linear and non-abelian.” だと そして、IUTは、Anabelian geometryの一般化、あるいは発展形だから、 話の筋は、あっているだろうよ また、”The first results for number fields and their absolute Galois groups were obtained by Jurgen Neukirch, Masatoshi Gunduz Ikeda, Kenkichi Iwasawa, and Koji Uchida (Neukirch?Uchida theorem) ” ここに、伊原先生が入るから、まさに正統な日本代数的整数論の伝統の上の、IUTが新たな類体論だと まあ、半分は宣伝もあるだろうが、全くのガセでもなさそうじゃない? (参考) https://en.wikipedia.org/wiki/Anabelian_geometry Anabelian geometry Anabelian geometry is a theory in number theory, which describes the way in which the algebraic fundamental group G of a certain arithmetic variety V, or some related geometric object, can help to restore V. The first results for number fields and their absolute Galois groups were obtained by Jurgen Neukirch, Masatoshi Gunduz Ikeda, Kenkichi Iwasawa, and Koji Uchida (Neukirch?Uchida theorem) prior to conjectures made about hyperbolic curves over number fields by Alexander Grothendieck. As introduced in Esquisse d'un Programme the latter were about how topological homomorphisms between two arithmetic fundamental groups of two hyperbolic curves over number fields correspond to maps between the curves. These Grothendieck conjectures were partially solved by Hiroaki Nakamura and Akio Tamagawa [ja], while complete proofs were given by Shinichi Mochizuki. つづく 次ページ最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch