Inter universal geometryとABC予想(応援スレ)at MATH
Inter universal geometryとABC予想(応援スレ) - 暇つぶし2ch686:現代数学の系譜 雑談
21/09/25 20:15:27.31 LBP5jgAj.net
>>624
つづき
ヒルベルトの第12番目の問題は、指数函数をより一般化したような関数を考え、その特殊値が一般的な代数体 K の最大アーベル拡大 Kab を生成することが可能かどうかを問う問題と解釈できる。Kが虚二次体 Q(τ) の場合には虚数乗法論によりその最大アーベル拡大はモジュラ函数 j(τ) と楕円函数 ?(τ, z) の特殊値(対応する楕円曲線の等分点における値)と 1のべき根を全てつけ加える事で得られることがわかる。これが虚二次体に対するヒルベルトの問題への解答である。さらに虚二次体の高次元化ともいえるCM体に対する結果は志村五郎により得られた。
類体論はダフィット・ヒルベルト自身と、エミル・アルティンと20世紀前半の他の人々により開拓された。特に、高木貞治は、絶対アーベル拡大体が存在することを証明した。高木の存在定理を参照。しかしながら、類体論の中で Kab を具体的に構成することは、最初にクンマー理論を使いより大きな非アーベル拡大を構成し、それからアーベル拡大へ落とし込むことでなされるので、従ってアーベル拡大のより具体的な構成方法を問うているヒルベルトの問題の解には至っていない。
1960年頃より、志村五郎と谷山豊により一般のCM体に対する結果が得られた。CM体のアーベル拡大を記述するために、アーベル多様体の虚数乗法を



次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch