21/06/26 17:37:01.57 iGd5pscu.net
生田勇人(39)
高知市朝倉中学校卒業
恐喝と暴行、偽証、傷害により逮捕、起訴。
取り調べで「事実無根」と容疑を否認。
卓球所に松岡学(39)と出入りし賭け試合を被害者に強要、一回ミスったら1000円払えというルールを強要。
2万円を取ろうとした。親にチクったらただじゃ済まんぞと被害者の胸倉をつかみ2000円を脅し取り、後日腹を殴った疑い。
生田勇人の両親も被害者の親にたかっており親子でたかっていた疑惑がある。
34:132人目の素数さん
21/06/26 21:45:58.28 ts/AJbhq.net
>>28
>フェセンコといえばショルツェ
>スティクスへ罵倒
わかるんだけど
フェセンコ先生も口が悪い
志村先生と良い勝負かも
でもね、山下先生がそれに乗ったらまずいよね
まあ、大人の処世術が出来ないんだろうね、純粋培養の数学者かもね(^^
35:132人目の素数さん
21/06/26 23:16:14.35 ts/AJbhq.net
現状まとめ
URLリンク(www.kurims.kyoto-u.ac.jp)
宇宙際タイヒミューラー理論の拡がり
整数の加法構造(=「足し算」)と乗法構造(=「掛け算」)がどのように絡まり合っているか、その絡まり具合の解明は整数論において最も重要かつ中心的なテーマの一つである。2012年8月、望月新一(=本訪問滞在型研究の提案者・組織委員長)はこの絡まり具合を解明する上において重要な前進となる「宇宙際タイヒミューラー理論」に関する連続論文をプレプリントとして発表し、理論の帰結となる「ABC予想」の証明が世界的な注目を集めた。理論の発表以降の約9年の間に:
・約7年半に及ぶ審査を経て理論に関する連続論文(4篇)は国際数学雑誌PRIMSに掲載された。
・理論に登場する不等式を 数値的に明示的な形で精密化する、5人の著者による共著論文のプレプリントが発表された。
・理論の理解者や習熟者(=理論の学習や関連した研究活動が進んでいる研究者)は多数の関係者の並々ならぬ努力により少しずつ増えている。
・連続論文の著者のみならず、理解者や習熟者によるサーベイ等の解説原稿(=出版済みまたは出版予定が6件、未出版でも公開済みが1件)が多数執筆されている。
・世界各地(=日・英・露・米・中・独・仏等)で理論に関する 講演や小規模なワークショップ・連続講演等は(件数の正確な勘定は困難だが)既に数十件行なわれている。
・日英仏の参加者によるオンライン(ズーム)の長期ワークショプ(=2020年9月~2021年4月)も開催されている。
これらの一連の活動により、十数名の研究者から構成される一種の「宇宙際タイヒミューラー理論コミュニティ」が形成されつつあるとも言える。また、組合せ論的遠アーベル幾何等、宇宙際タイヒミューラー理論に関連した考え方に依拠した研究の進展により、グロタンディーク・タイヒミューラー群や有理数体の絶対ガロア群の研究との重要な繋がりも生まれ始めている。
このような状況を踏まえ、「宇宙際タイヒミューラー理論コミュニティ」や、宇宙際タイヒミューラー理論に関連した数学に関心を抱いている研究者に対して、一堂に会し、上述の一連の進展を巡る活発な議論を行なう場を、単発の(=1週間程度の)研究集会では叶わない、月単位の交流が可能な環境の下で実現することが、今回の訪問滞在型研究の趣旨である。
36:132人目の素数さん
21/06/26 23:20:43.18 ts/AJbhq.net
>>33
>これらの一連の活動により、十数名の研究者から構成される一種の「宇宙際タイヒミューラー理論コミュニティ」が形成されつつあるとも言える。
まだ十数名?
かたく見積もってってことか?
37:132人目の素数さん
21/06/27 01:30:56.03 e2zbZaBd.net
結局賛同してるのは利益相反のある取り巻きだけw
数 研 終 わ っ た な 藁
38:132人目の素数さん
21/06/27 04:53:34.35 OkUUAHGw.net
日本数学会に「IUTセクション」ができそうな勢いか
39:132人目の素数さん
21/06/27 05:20:55.93 kvNHivYQ.net
日本だけ数学会に「IUTセクション」ができそうな勢いかもしれないけど、
数秘術が流行りそうだ
40:132人目の素数さん
21/06/27 06:26:51.34 C5ifze+r.net
>>32
>IUTの取り巻きもツイッターで罵倒
が抜けている。
都合が悪い事実は隠蔽か罵倒する
>大人の処世術が出来ないんだろうね、
>純粋培養の数学者かもね
IUTは大人の処世術しかないもんね
数学もどきの星サーベイが望月公認の
講究録別冊にあるな。
全ては望月IUTの修行しかなく
IUTでは議論は禁止で数学として正しい
かどうかなんて問うと
ガリレオのように弾圧されるじゃん
41:132人目の素数さん
21/06/27 06:53:49.48 0WB/KnN7.net
おまいら鶴の掃き溜めで無駄時間過ごしてないで
anabelian@cheerful.com
国際会議�
42:ノエントリーして直接言えや
43:132人目の素数さん
21/06/27 07:43:57.73 7w0KIUi3.net
ID:ts/AJbhqも、いつまでもIUTとか荒唐無稽な夢ばかり追ってないで
フーリエ変換でも勉強したほうがいいんじゃね?
そのほうが自分の仕事の役に立つよ
どんな仕事してるか知らんけどさ
44:132人目の素数さん
21/06/27 09:41:37.81 5wbdzBIx.net
>>40
>ID:ts/AJbhqも、いつまでもIUTとか荒唐無稽な夢ばかり追ってないで
>フーリエ変換でも勉強したほうがいいんじゃね?
>そのほうが自分の仕事の役に立つよ
>どんな仕事してるか知らんけどさ
どうも、スレ主です
アドバイスありがとう
1.IUTは、エンタです。小説や落語やスポーツ観戦と同じです。
2.なので、”荒唐無稽な夢”と批判されてもね
むしろ、小説の方が、「結局作り話?」という意識が出るので、感情移入できない面もあり
(矛盾するようだが、面白い小説があり、感情移入できる小説もあるよ。作者の人生体験が凝集されているような小説とか、実話を題材にしているとか。)
3.IUTの面白さは、
1)世界的な問題解決の理論→2)世界の理解が進まない→3)ショルツェ氏のダメ出し→4)査読完了、GOサイン→5)今後は乞うご期待
とまあ、ここまで来たのです。これからが、面白いところです
4.仕事は変わって、いまは数学は直接は関係ありません
5.”フーリエ変換”のみならず、20世紀の数学教育と21世紀の数学教育は求められるものが違うと思っています
例えば、”フーリエ変換”なんて、数式処理ソフトに乗る
だから、昔の読み書きソロバンって言われた時代の”ソロバン”になったようなもの
電卓あれば”ソロバン”修行は、実用上は不要です。と同様に、”フーリエ変換”修行も不要では?
数学全般にわたって、そう思っています
(参考;”フーリエ変換” 数式処理ソフト 検索結果)
Wolfram|Alpha Examples: 積分変換
... 逆変換を,計算して可視化する.フーリエ変換,ラプラス変換,メリン変換,Z?変換を計算する. ... やすくするために使われます.
「Maxima」を活用した数学学習 - 数ナビの部屋
2021/02/03 ? 数学学習における数式処理ソフト「Maxima」の活用法がまとめられています. ... それにより,フーリエ係数やフーリエ級数の式,グラフ化, そしてフーリエ変換?を求めることができます.
フーリエ変換 - MATLAB & Simulink - MathWorks
フーリエ変換は、信号処理用のフーリエ解析も含めて、多数のアプリケーションでデータを解析するための強力なツール ... フーリエ変換式を直接使用して y の n 個の要素をそれぞれ計算するには
(引用終り)
以上
45:132人目の素数さん
21/06/27 10:34:19.05 7w0KIUi3.net
>>41
>”フーリエ変換”修行も不要では?
論理がわかってないと数式処理も使えないよ
素人は言い訳せずに勉強しようね
46:132人目の素数さん
21/06/27 12:16:58.66 5wbdzBIx.net
>>42
大学時代に勉強しましたよ
細かいことは忘れたけど
フーリエ変換は、フーリエ級数の周期が∞になったものですよね
で、フーリエ級数展開の類似が、直交関数系による展開
フーリエ変換は、複素数まで考えるとか
なお、関数によっては、フーリエ変換よりウェブレット展開が、数値計算としては精度が良い場合とか、計算効率が良い場合があるとか
そういうことを総合的に学ぶべし
それが21世紀の数学の学び方では?
上記、直交関数系とかウェブレットとか、数学ソフトを手元において
使いながらね(^^
47:132人目の素数さん
21/06/27 12:34:48.55 7w0KIUi3.net
>>43
>総合的に
い
48:つから「総合的に」という言葉は 「理屈ぬきに」とか「計算方法だけ」とかいう 矮小な意味になったんだい?w
49:132人目の素数さん
21/06/27 12:35:58.82 7w0KIUi3.net
>>43
>周期が∞になったもの
こういう粗雑な言葉で誤魔化す人って
だいたいコンパクトとノンコンパクトの違いが
全然分かってないド素人なんだよなw
50:132人目の素数さん
21/06/27 13:11:25.73 5wbdzBIx.net
>>43
追加:「ラプラス変換」を落としていたね
質問「フーリエ変換」と「ラプラス変換」の違いはなんでしょうか?
”ラプラス変換は、積分方程式と微分方程式を代数方程式に変換します。”とあるけど、「フーリエ変換」も同じ
”ラプラス変換にはフーリエ変換にはない指数減衰項があるため、フーリエ変換では発散する関数も変換ができます。大きな違いはそこかと思っています。”は、そうかも
多変数のときは、フーリエ変換を使う印象があるけどね
(参考)
URLリンク(jp.quora.com)
quora 「フーリエ変換」と「ラプラス変換」の違いはなんでしょうか?
回答数: 3件
Petrosky Tomioさん 回答日時: 1年前
以下に説明するように、フーリエ変換は「境界値問題」を論じる時に使われ、ラプラス変換は「初期値問題」を論じる時に使われます。
フーリエ変換は、変数の定義域は任意の場合(?∞から+∞を含む)に使われます。この場合、その定義域の境界の値でその変換が決まります。ですから、フーリエ変換は「境界値問題」を扱うときに使われます。その場合の典型的な変数は、位置に関する座標であり、座標に関する変換としてフーリエ変換が使われます。
一方、ラプラス変換は、時刻に関する変換の時に使われます。そして、時刻に初期の時刻があるので、時刻の変数には一般に下限があります。その下限を通常はゼロとします。そして、その時刻ゼロから出発してその未来はどうか、それともその過去はどうかという議論の時に使われます。それを、数学では「初期値問題」と言います。
Jayaram Krishnaswamy, ノースロップ・グラマンに勤務 (1985~1993年)
回答日時: 2年前
Lapalce変換およびフーリエ変換は、変数(時間関数)を他の形態の数学的表現に表すために使用される。
Lapalce変換は正の実変数t(しばしば時間)の関数をとり、それを複素変数s(周波数)の関数に変換します。
ラプラス変換は、積分方程式と微分方程式を代数方程式に変換します。
Laplace transform - Wikipedia
フーリエ変換(FT)は、時間(信号)の関数を周波数信号に含まれる。これは、音符がその構成音の周波数(またはピッチ)としてどのように表現されるかと同様です。
Fourier transform - Wikipedia
つづく
51:132人目の素数さん
21/06/27 13:11:49.76 5wbdzBIx.net
>>46
つづき
桝田屋 秀樹, 電子部品開発エンジニア (1990年?現在)
回答日時: 1年前
イメージで回答します。ラプラス変換は大体においてフーリエ変換を含んでおり、ラプラス変換にはフーリエ変換にはない指数減衰項があるため、フーリエ変換では発散する関数も変換ができます。大きな違いはそこかと思っています。
URLリンク(www3.muroran-it.ac.jp)
材料工学のための数学(工業数学)
URLリンク(www3.muroran-it.ac.jp)
東北大学 工学部 材料科学総合学科
工業数学 II(亀川)
4.ラプラス変換
フーリエ解析では、変数が-∞から∞の領域を対象とするので、初期値を扱う場合には最適とは言えない。理工学では、振動、電気回路、制御などの領域で初期値を有する微分方程式がよく使われる。このような線形微分方程式を解くための道具としてラプラス変換は有効である。
4-3.ラプラス変換の微分方程式への応用(重要)
ラプラス変換やラプラス逆変換を利用することによって、常微分方程式や偏微分方程式などを、その境界条件や初期条件も含めて、微分方程式の解を積分計算なしに、簡便に求めることができる場合がある。
URLリンク(ramenhuhu.com)
新米夫婦のふたりごと ラプラス変換
URLリンク(ramenhuhu.com)
新米夫婦のふたりごと
ラプラス変換による偏微分方程式の解法
(引用終り)
以上
52:132人目の素数さん
21/06/27 13:14:41.39 5wbdzBIx.net
>>45
>こういう粗雑な言葉で誤魔化す人って
>だいたいコンパクトとノンコンパクトの違いが
>全然分かってないド素人なんだよなw
会社で使えない数学者の典型かもな
ぐだぐだ屁理屈こねて
実際に「じゃ、これ解いてみな」と言われると
「コンパクトとノンコンパクトの違いがぁ~!」と
絶叫する数学屋かな?
53:132人目の素数さん
21/06/27 14:34:56.60 7w0KIUi3.net
>>48
>会社で使えない数学者の典型かもな
使えない会社員は君だろ
ペラペラ薄い知識を語って
実際に「じゃ、これ解いてみな」と言われると
「数学ソフトの使い方がぁぁぁぁ」
といって悶死w
だからウソはいけないっていってるじゃんw
54:132人目の素数さん
21/06/27 14:43:15.23 7w0KIUi3.net
ま、素人はこれでも見とけ
URLリンク(www.youtube.com)
つかみのギャグが寒いぞw
55:132人目の素数さん
21/06/27 16:09:37.78 5wbdzBIx.net
>>49
どうも、スレ主です
レスありがとう
使えないもの同士で、良い勝負じゃね?
あなたとは(^^;
56:132人目の素数さん
21/06/27 19:06:46.00 7w0KIUi3.net
>>51
で、無能なくせに自信家の君を雇った会社ってどこだい?www
57:132人目の素数さん
21/06/27 21:09:29.97 5wbdzBIx.net
>>52
? お前を雇った会社は無いの?
そりゃ、雇わない会社が正解だよ
お前なんか、数学科を鼻にかけるだけ だものね
58:132人目の素数さん
21/06/28 00:31:04.93 UwH8wkSo.net
>>48
>>49
どっちも使えなさそうなのが草
59:132人目の素数さん
21/06/28 07:12:36.64 0l/16VXN.net
>>53
なんだ、こいつニートか
ま、大学1年の実数の定義でつまづくバカじゃ、就職はムリだなw
60:132人目の素数さん
21/06/28 17:29:38.91 RUmep2sH.net
前スレより Inter-universal geometry と ABC予想 (応援スレ) 55
スレリンク(math板:986番)-
>>986 補足
(>>942より)
(引用開始)
ガリレイの相対性原理
=特殊相対性原理 & 時刻不変の原理
これ豆な
(引用終り)
「特殊相対性原理」が、一般の説明と違うよ
「特殊相対性原理」一般の説明:アインシュタインは、光速度不変と特殊相対性原理(ローレンツ変換)を基に特殊相対性理論を提唱した。特殊相対性理論では時間と空間が一体となる四次元時空として慣性系どうしで物理法則が正確に成り立つ
日本大百科全書(ニッポニカ)「相対性原理」の解説 [山本将史]
だよね
てめえが独自説唱えたいなら、
「特殊相対性原理」一般の説明と違う説の定義を書くべきだよね、
おサルさんよw(^^
以上
61:132人目の素数さん
21/06/28 17:42:23.98 RUmep2sH.net
>>56
追加参考
URLリンク(ja.wikipedia.org)
特殊相対性理論
(抜粋)
2.5.5 ガリレイの相対性原理と特殊相対性原理
ニュートン力学近似」とは、慣性座標系間の相対速度 v が光速 c と比べて十分小さい場合の理論であると言うことがいえる。
このことからニュートン力学はガリレイ変換に不変であるというガリレイの相対性原理は、特殊相対性理論では以下の形で成立していると考えられる。
特殊相対性原理:全ての物理法則はローレンツ変換に対して不変でなければならない[25] [疑問点 ? ノート]
(引用終り)
62:132人目の素数さん
21/06/28 17:51:31.88 0l/16VXN.net
>>56-57
Inter-universal geometry と ABC予想 (応援スレ) 55 の
997-998に全部書いてあるじゃんw
997 名前:132人目の素数さん 2021/06/28(月) 16:25:56.36 ID:0l/16VXN
勤勉な学生なら
ガリレイ変換が 時刻を保つ線型変換であり
ローレンツ変換が 光速度を保つ線型変換である
という事実に簡単に気づける
相対性原理というのは
「変換群で写り合う座標系は同等」
というだけのことであって、あとは、
どういう変換群をとるかの違いだけ
998 名前:132人目の素数さん 2021/06/28(月) 16:34:15.93 ID:0l/16VXN
990
>ガリレイの相対性原理とは、
>等速で移動する座標系(慣性系)どうしでは
>物理法則が同じであるということである。
アインシュタインの特殊相対性原理でも
等速で移動する座標系(慣性系)どうしでは
物理法則が同じである。
つまり上記の文章ではガリレイとアインシュタインの違いは説明できない
では、何が違うか?
実は「不変とするもの」が違う
ガリレイ変換では、時刻を保つ(その代わり光速度は保たない)
ローレンツ変換では、光速度を保つ(その代わり時刻は保たない)
時刻と光速度の両方を保つ変換は恒等変換しかない
恒等変換による相対性原理も考えられるが実質的に意味がない
同等となる座標系が自分一つに限られるからw
63:132人目の素数さん
21/06/28 17:58:58.94 0l/16VXN.net
>>54
否定はしないw
私は出世はしなかった
しかし地道に仕事はしている
猿回しの1がいったい会社でどんな仕事してるのか大いに興味ある
技術関係の仕事はしてないだろう あんな粗雑な人には無理
確実に機械がぶっ壊れるw
おそらく口八丁手八丁の営業関係だろう
そういうところは辻褄が合わなくても問題にならないから
64:132人目の素数さん
21/06/28 18:01:57.50 0l/16VXN.net
ブルシット・ジョブ
URLリンク(ja.wikipedia.org)
猿回し君の仕事は、「脅し屋」という奴だと思う
「脅し屋
雇用主のために他人を脅したり欺いたりする要素を持ち、
そのことに意味が感じられない仕事。
ロビイスト、顧問弁護士、テレマーケティング業者、広報スペシャリストなど、
雇用主に代わって他人を傷つけたり欺いたりするために行動する悪党。」
65:132人目の素数さん
21/06/28 18:31:53.74 RUmep2sH.net
>>56-57 補足
(>>942より)
(引用開始)
ガリレイの相対性原理
=特殊相対性原理 & 時刻不変の原理
これ豆な
(引用終り)
違うよね、ここ
URLリンク(ja.wikipedia.org)
特殊相対性理論
(抜粋)
2.5.5 ガリレイの相対性原理と特殊相対性原理
ニュートン力学近似」とは、慣性座標系間の相対速度 v が光速 c と比べて十分小さい場合の理論であると言うことがいえる。
このことからニュートン力学はガリレイ変換に不変であるというガリレイの相対性原理は、特殊相対性理論では以下の形で成立していると考えられる。
特殊相対性原理:全ての物理法則はローレンツ変換に対して不変でなければならない[25] [疑問点 ? ノート]
(引用終り)
つまり
特殊相対性原理:全ての物理法則はローレンツ変換に対して不変でなければならない
↓
慣性座標系間の相対速度 v が光速 c と比べて十分小さい場合の理論が、ニュートン力学近似
即ち、v が光速 c と比べて十分小さい場合の理論:ニュートン力学近似、ニュートン力学はガリレイ変換に不変であるというガリレイの相対性原理
もっと言えば、特殊相対性理論において v/c→0の極限で、ガリレイの相対性原理に一致だよ
全く理解が追い付かないおサルさんだな(^^
66:132人目の素数さん
21/06/28 19:49:33.03 0l/16VXN.net
>>61
分かってないのは猿回し君だよw
c=∞なら、光円錐=同時空間となる
>違うよね
何がどう違う、と駄々こねてる?
まさかc<∞のローレンツ変換でも同時は保たれる、とか馬鹿言ってる?
それ、完全に反相対論の●チガイ野郎だからな わかってるか?
やっぱ、お馬鹿の猿回し君には、相対論は全く受け入れられないか(嘲)
67:132人目の素数さん
21/06/28 19:51:05.30 0l/16VXN.net
恒等変換以外は、ガリレイ変換≠ローレンツ変換 だぞ
68:132人目の素数さん
21/06/28 20:28:48.69 9Sqq12HI.net
>>61 補足
(引用開始)
ガリレイの相対性原理
=特殊相対性原理 & 時刻不変の原理
これ豆な
(引用終り)
なにをグダグダ言い訳を
違うよね、ここ
下記の「指導原理」を見よ!(^^
半可通のおサル、破れたりぃ~!w
(参考)
URLリンク(ja.wikipedia.org)
特殊相対性理論
(抜粋)
2.1 指導原理
詳細は「特殊相対性理論における前提(英語版)」を参照
特殊相対性理論では、エーテルの存在を仮定せず、代わりに理論の基盤として以下の二つの原理を採用した
光速度不変の原理:真空における光の速度 c はどの慣性座標系でも同一である
相対性原理:全ての慣性座標系は等価である
光速度不変の原理は前述したマイケルソン・モーリーの実験の結果から帰結される。実際、この実験の結果によれば、地球から見た光速度は季節によらず同一であった。地球の運動方向や速度は季節によって異なるので、この実験の結果は、光速度が系の運動方向や速度によらないことを意味し、これはすなわちどの慣性系から見ても光速度が不変である事を強く示唆しているのである
一方、相対性原理はガリレイの相対性原理を緩和したもので、全ての慣性座標系が等価であることは仮定するが、慣性座標系の間の変換則がガリレイ変換であるとは仮定しない。この原理は、光速度不変の原理から示唆される
光速度不変の原理によれば、どの慣性座標系でも同一であるのだから、絶対静止座標系のような「特別な」座標系は存在せず、全ての慣性座標系は等価であると思われるのである
エーテル仮説は、エーテルによる「絶対静止座標系」が存在するという仮定を採用し、全ての慣性系は等価であるというガリレイの相対性原理を捨て去ったものであった
それに対し特殊相対性理論では、ガリレイの相対性原理を緩和した相対性原理を仮定し、代わりに「絶対静止座標」とその基盤であるエーテル仮定とを放棄したのである
なお、相対性原理理論の成果はそれまでのニュートン力学と次の意味で両立していなければならない
慣性座標系間の変換則は非相対論的極限
v/c → 0 においてガリレイ変換に漸近する。ここで v は2つの慣性座標系間の速度で、c は真空中の光速度である
(引用終り)
以上
69:132人目の素数さん
21/06/28 20:36:38.30 5e5vEjSG.net
>ガリレイの相対性原理は、
あくまで伸び縮みしないユークリッド空間の(ガリレオ変換の)幾何学だよ
一方、アインシュタインの特殊相対性原理は、ユークリッド空間が相対速度に
よって、伸び縮みする(ローレンツ
変換の)幾何学だよ
70:132人目の素数さん
21/06/28 20:56:03.29 5e5vEjSG.net
0910 132人目の素数さん
2021/06/26 18:31:39
>>904
>うそw
意味わからん
たかが、特殊相対性理論でしょ
ミンコフスキー知っていますか?
さて、記憶では
当時、エーテルの存在が信じられていた 光の波動説 波動を伝える媒体がエーテルです
マイケルソン・モーレーだったかの
光速を計る実験をした
地球の自転だったか公転だったかの動きを利用してね。エーテルとの相対運動の影響で光速に差が出ると期待されていたのです
ところが、いくら測定しても、光速は不変だった
そこで、ローレンツ収縮という考えが出た
同じころ、ポアンカレが数学的理論を考えたという
ローレンツ変換で不変な物理を考えた
対して、アインシュタインの理論は、
1)絶対静止の座標系を否定した
(全ては相対的だと)
2)光速度は不変
この二つの原理から
アインシュタインの相対性理論が導かれる
71:132人目の素数さん
21/06/28 21:02:03.05 9Sqq12HI.net
>>65
>伸び縮みする(ローレンツ変換の)幾何学だよ
そだねー
下記の「ローレンツ収縮」ですね
URLリンク(ja.wikipedia.org)
特殊相対性理論
(抜粋)
4 特殊相対性理論の帰結
4.1 ローレンツ収縮
以下では話を簡単にするため時間1次元+空間1次元の計2次元の場合について述べる。
ある慣性系 (ct',x') において静止している剛体について、この慣性系 (ct′, x′) で測った剛体の長さをこの剛体の固有長さと呼ぶ。
今、固有長さ l の棒が慣性系 (ct′, x′) に対して静止しており、これを別の慣性系 (ct,x) から眺めたとする。
話を簡単にするため、2つの慣性系の原点はいずれも棒の1つの端点 O に一致しているものとする。
棒に対して長さ方向に運動している座標系からみると、棒の長さは
1/γ 倍に縮んだかのように見える。この現象を ローレンツ収縮[33][34]もしくはフィッツジェラルド=ローレンツ収縮[35][36]という。
URLリンク(upload.wikimedia.org)
ローレンツ収縮。図では時間 ct を w で表している。慣性系 (x',w') に固有長さが l の棒(x' 軸の濃い紫)があり、この棒の時空間上の軌跡が薄紫である。それを別の慣性系 (x,w) で計ると長さが
l/γ に縮んで見える。
72:132人目の素数さん
21/06/28 21:05:05.06 5e5vEjSG.net
さすがはIUT信者
世界はIUTのまわりを公転する
↓
意味わからん
たかが、特殊相対性理論でしょ
ミンコフスキー知っていますか?
73:132人目の素数さん
21/06/28 21:07:32.54 9Sqq12HI.net
>>66
ありがとう
(引用開始)
対して、アインシュタインの理論は、
1)絶対静止の座標系を否定した
(全ては相対的だと)
2)光速度は不変
この二つの原理から
アインシュタインの相対性理論が導かれる
(引用終り)
そこは、下記が相当するね
(>>64より)
(参考)
URLリンク(ja.wikipedia.org)
特殊相対性理論
(抜粋)
2.1 指導原理
特殊相対性理論では、エーテルの存在を仮定せず、代わりに理論の基盤として以下の二つの原理を採用した
光速度不変の原理:真空における光の速度 c はどの慣性座標系でも同一である
相対性原理:全ての慣性座標系は等価である
光速度不変の原理によれば、どの慣性座標系でも同一であるのだから、絶対静止座標系のような「特別な」座標系は存在せず、全ての慣性座標系は等価であると思われるのである
エーテル仮説は、エーテルによる「絶対静止座標系」が存在するという仮定を採用し、全ての慣性系は等価であるというガリレイの相対性原理を捨て去ったものであった
それに対し特殊相対性理論では、ガリレイの相対性原理を緩和した相対性原理を仮定し、代わりに「絶対静止座標」とその基盤であるエーテル仮定とを放棄したのである
(引用終り)
以上
74:132人目の素数さん
21/06/28 21:08:42.96 5e5vEjSG.net
触らないでw
75:132人目の素数さん
21/06/28 21:12:36.02 9Sqq12HI.net
>>68
>ミンコフスキー知っていますか?
ありがとう
下記だな
相対性理論を学べば、これくらいは常識ではあるがね
URLリンク(ja.wikipedia.org)
ミンコフスキー空間(ミンコフスキーくうかん、英: Minkowski space)とは、非退化で対称な双線型形式を持つ実ベクトル空間である。ドイツの数学者のヘルマン・ミンコフスキーに因んで名付けられている。アルベルト・アインシュタインによる特殊相対性理論を定式化する枠組みとして用いられる。この特定の設定の下では空間に時間を組み合わせた時空を表現するため、物理学の文脈ではミンコフスキー時空とも呼ばれる。
(抜粋)
歴史
ミンコフスキー空間の名前はヘルマン・ミンコフスキーにちなんだものである。ミンコフスキーは1907年ごろに、(アルベルト・アインシュタインによって発展させられていた)特殊相対性理論が時間の次元と空間の三つの次元を組み合わせた四次元の時空を用いることで簡素に説明されることを見いだした。
「空間と時間に関し私がここで展開したいと思っている視点は、実験物理学の土壌から芽生えたものであり、その力強さを内に持っている。この視点は革新的なものであり、これからは空間それ自身であるとか時間それ自身であるとかいったような概念は陰にすぎないところへと消え去っていくことになる。そしてこの両者を合わせたもののみが独立した実在としてあり続けることになる。」
??ヘルマン・ミンコフスキー、1908年
1890年代における双曲四元数の発展によりミンコフスキー空間への道が開かれることになった。実際のところ、数学的にはミンコフスキー空間とは双曲四元数の空間から乗法の情報を忘れて双線形形式
η(p, q) = ?(pq* + (pq*)*)/2
(これは双曲四元数の積 pq* によって定まる)のみを残したものと考えることができる。
(引用終り)
以上
76:132人目の素数さん
21/06/28 21:13:38.92 9Sqq12HI.net
>>70
ありがとう
応援してくれているんだろ?(^^;
77:132人目の素数さん
21/06/28 21:14:43.92 5e5vEjSG.net
おいらはミンコフスキーに
あったことがない
あしからず
78:132人目の素数さん
21/06/28 21:19:09.29 9Sqq12HI.net
>>73
ほいよ
写真あるよ(^^
URLリンク(ja.wikipedia.org)
ヘルマン・ミンコフスキーまたはヘルマン・ミンコウスキー(Hermann Minkowski, 1864年6月22日 - 1909年1月12日)は、ロシア(リトアニア)生まれのユダヤ系ドイツ人数学者。彼の提案したミンコフスキー空間は、アルベルト・アインシュタインの特殊相対性理論における「時空」をエレガントに数学的に表した。また、時空について光円錐を考えたのも彼である。その他に数論や幾何学に関する業績がある。
病理学者のオスカル・ミンコフスキーは兄。
写真
URLリンク(upload.wikimedia.org)
1885年にケーニヒスベルク大学から学位を得、卒業後すぐにボン
79:大学客員教授に、次いで1894年にヒルベルトの後を受けてケーニヒスベルク大学助教授に就任。1896年、チューリッヒのスイス連邦工科大学準教授に就任。ここでの教え子に、若き日のアインシュタインがいた。『数の幾何学』を発表。 1902年、ヒルベルトの努力でゲッティンゲン大学にミンコフスキーのために数学の講座が作られ、その教授に就任し、死去するまでこれを務めた。1907年までに、時間と空間を統一的に扱うミンコフスキー時空の概念を作った。 1907年『ディオファントス近似論』、翌1908年『運動する物体の電磁過程論の基礎』と題する論文を発表。1909年に虫垂炎によってゲッティンゲンで急死。同年『空間と時間』を発表。 業績 ミンコフスキーの主な業績は、幾何学、整数論そして数理物理学に関するものである。
80:132人目の素数さん
21/06/28 22:18:50.86 0l/16VXN.net
ローレンツ変換の式を見れば「収縮」ではないことは明らかだがw
ローレンツ変換
URLリンク(ja.wikipedia.org)
t'=γ(t-vx/c^2)
これを見て、
「ローレンツ変換は、ガリレイ変換と全く同様に、時刻の等しさを保つ!」
と思ってるなら正真正銘の白痴w
81:132人目の素数さん
21/06/28 22:36:04.21 9Sqq12HI.net
>>75
>ローレンツ変換の式を見れば「収縮」ではないことは明らかだがw
ほいよ
嫁め!(^^
URLリンク(ja.wikipedia.org)
特殊相対性理論
(抜粋)
4 特殊相対性理論の帰結
4.1 ローレンツ収縮
4.1.1 ローレンツ自身の解釈との違い
ローレンツ収縮は、アインシュタインが特殊相対性理論を提案する以前に、ローレンツとフィッツジェラルドが独立に提案したものである。
彼らの提案は数式上は特殊相対性理論のそれと同一であるが、彼らの理論はエーテル仮説を前提としており、物体は「エーテルの風」を受けて3次元空間内で実際に縮む[37]とするものであった。
それに対し特殊相対性理論では、ローレンツ収縮を4次元時空間において解釈したものであり、前述のように慣性系によって計っている場所が違う事が収縮の起こる原因である。
(引用終り)
82:132人目の素数さん
21/06/28 22:42:20.52 0l/16VXN.net
>>76
猿回し君、コピペした文章の意味わかってる?w
あのね、相対論の場合、一般的に
ある座標系で同時刻の2点は、
別の座標系では同時刻ではないんだよ
だからローレンツ収縮は実際は収縮ではない
動いてる棒の同時刻の2点は、
棒が静止してる座標系では異なる時刻
逆に静止している棒の同時刻の2点は
棒が動いている座標系では異なる時刻
君、全然分かってなかっただろwww
83:132人目の素数さん
21/06/28 22:57:31.62 9Sqq12HI.net
>>76 補足
(引用開始)
URLリンク(ja.wikipedia.org)
特殊相対性理論
(抜粋)
4 特殊相対性理論の帰結
4.1 ローレンツ収縮
4.1.1 ローレンツ自身の解釈との違い
ローレンツ収縮は、アインシュタインが特殊相対性理論を提案する以前に、ローレンツとフィッツジェラルドが独立に提案したものである。
彼らの提案は数式上は特殊相対性理論のそれと同一であるが、彼らの理論はエーテル仮説を前提としており、物体は「エーテルの風」を受けて3次元空間内で実際に縮む[37]とするものであった。
それに対し特殊相対性理論では、ローレンツ収縮を4次元時空間において解釈したものであり、前述のように慣性系によって計っている場所が違う事が収縮の起こる原因である。
(引用終り)
・ ローレンツ収縮、彼らの提案は数式上は特殊相対性理論のそれと同一であるが、解釈が違うってこと
・もっと言えば、「ローレンツ収縮」に対して、アインシュタイン流つまりは特殊相対性理論流の解釈を与えたんだ
・測定した現象と数式は、ローレンツ収縮(おれが勉強した本では、「フィッツジェラル・ローレンツ収縮」と書かれていた。多分、フィッツジェラルがちょっと早かったんだ(下記))
(参考)
URLリンク(ja.wikipedia.org)
長さの収縮 (length contraction) は、運動する物体の長さが、自身の静止系で測定される長さである固有長(proper length)よりも短く測定される現象[1]。ローレンツ収縮やローレンツ・フィッツジェラルド収縮(ヘンドリック・ローレンツとジョージ・フィッツジェラルドにちなむ)とも呼ばれる。物体が進んでいる方向のみに生じる。普通の物体ではこの効果は日常的な速度では無視でき、物体が観察者に対して光速に近づくときのみ重要となる。
つづく
84:132人目の素数さん
21/06/28 22:58:00.16 9Sqq12HI.net
>>78
つづき
歴史
詳細は「特殊相対性理論の歴史(英語版)」を参照
長さの収縮は、マイケルソン・モーリーの実験の否定的な結果を説明し、静止エーテルの仮説を救うためにジョージ・フィッツジェラルド(1889)とヘンドリック・ローレンツ(1892)により仮定された(ローレンツ・フィッツジェラルド収縮仮説)[2][3]。フィッツジェラルドとローレンツの両者は、運動する電荷がつくる電場が変形するという事実に言及したが(オリヴァー・ヘヴィサイドにちなむヘヴィサイド楕円体、ヘヴィサイドは1888年に電磁理論からこれを導出した)、当時分子間力が電磁力と同じふるまい方をすると推測するに十分な理由がなかったため、長さの収縮はアドホックな仮説と見なされた。1897年、ジョゼフ・ラーモアが全ての力が電磁気的な起源を持つと考えられるモデルを開発し、長さの収縮はこのモデルの直接的な結果として現れた。しかしアンリ・ポアンカレ(1905)により電磁気力だけでは電子の安定性を説明できないことが示された。そのため彼は別のアドホックな仮説を導入しなければならなかった。それは非電気的結合力(ポアンカレ応力)であり、これを用いてポアンカレは電子の安定性を確実にし、長さの収縮を動力学的に説明し、それにより静止エーテルに対する運動を覆い隠した[4]。
最終的には、アルベルト・アインシュタイン(1905)が、仮想的なエーテルの中を動く運動を用いずに、特殊相対性理論を使うことでこの収縮を説明し、我々の空間、時間、同時性の概念を変え、収縮仮説からアドホックな特徴を初めて[4]完全に取り除いた[5]。アインシュタインの考えは、自身の4次元時空の概念を導入することで全ての相対論的効果の幾何学的解釈を論証したヘルマン・ミンコフスキーによりさらに洗練された[6]。
(引用終り)
以上
85:132人目の素数さん
21/06/28 23:02:18.19 mk5YDCzG.net
そろそろ気づいたら、
IUTを応援するとはIUT語を話し
基盤も言語もこちらの世界と
全く異なる世界に住んでいるんだよ。
IUTの特殊相対論も全く異なるから
間違いではなく間違ってすらいない。
「ローレンツ変換」がゆがんで
復元不能だよ
86:132人目の素数さん
21/06/28 23:35:37.97 9Sqq12HI.net
>>80
>そろそろ気づいたら、
>IUTを応援するとはIUT語を話し
>基盤も言語もこちらの世界と
>全く異なる世界に住んでいるんだよ。
武谷三男の三段階論をご存じか?
私見だが、IUTは下記の”2.実体論的段階”ではないだろうか?
今後、「3.本質論的段階」へ至る途中にすぎない
今年の4回の国際会議の結果を見ようね(^^
URLリンク(ja.wikipedia.org)
武谷 三男(たけたに みつお、1911年10月2日 - 2000年4月22日)は日本の理論物理学者。理学博士。三段階論、技術論で知られる。
3.1 素粒子論
3.2 武谷理論
3.2.1 三段階論
三段階論とは、量子力学の認識論的問題、すなわち量子力学の測定問題および解釈問題を解決する実用的な理論形成手法として提唱された方法論である。唯物弁証論的な実体論的方法の明確化が革新的であった。
1.現象論的段階
量子力学の範疇に入る現象で測定にかかるものをそのまま記述する段階
2.実体論的段階
上記現象の方程式を作る前に、現象論的段階に出てこない実体(模型[6]、粒子など)を知る(場合によっては新たに導入する)段階
3.本質論的段階
現象論的段階で記述される現象を、実体論的段階で導入した実体も含めて、方程式など主として数学的手法で記述する段階
87:132人目の素数さん
21/06/28 23:42:24.53 dKeThA/I.net
>「{0,1,2,...,ω}に全順序関係<が存在するなら、{0,1,2,...,ω} の元すべてからなる<無限上昇列 0<1<…<ω が存在する」
>が未証明なので証明して下さい。
からも
>0<・・・<ω が<無限上昇列だと言うならωの直前の項が何か答えて下さいね
からも逃亡する逃亡ザルはなんで人里に降りてくるの?
88:132人目の素数さん
21/06/28 23:59:07.22 dKeThA/I.net
<の左辺が要らないとか、要するに逃亡ザルは不等号<の定義が分かってないんだね
サルはサル山へお帰り 人里に降りて来てはいけないよ
89:132人目の素数さん
21/06/29 00:23:11.86 FlJqw33a.net
ちなみに
>「{0,1,2,...,ω}に全順序関係<が存在するなら、{0,1,2,...,ω} の元すべてからなる<無限上昇列 0<1<…<ω が存在する」
が偽であることは、次の命題より自明。
命題 順序数からなる<列 0<1<…<ω は有限列
証明
ωの定義よりωより小さい順序数は自然数。
よって 0<1<…<ω におけるωの直前は自然数。
それが如何なる自然数nでも 0<1<…<n は有限列だから 0<1<…<n<ω も有限列。
サルが逃亡するのも無理は無い。なんせ偽命題なんだから証明しようが無いw
アホザルはサル山へ帰りなさい。
90:132人目の素数さん
21/06/29 00:29:38.67 FlJqw33a.net
逃亡ザルが
>0<・・・<ω が<無限上昇列だと言うならωの直前の項が何か答えて下さいね
からも逃亡するのも無理は無い。
なんせ自然数以外に答え様が無く、尚且つ如何なる自然数を答えようと、主張「<無限上昇列 0<1<…<ω が存在する」は直ちに否定されるからw
アホザルはサル山へ帰りなさい。
91:132人目の素数さん
21/06/29 00:40:10.11 FlJqw33a.net
進退窮まったアホザルは愚かにも
「不等号<の左辺は不要」
などという世迷言を口走り始めた。
無理を通そうとしてさらなる無理を持ち出す始末。まさにサル知恵w
92:132人目の素数さん
21/06/29 00:42:11.11 FlJqw33a.net
数学は人間様の営みなので、サルには無理です。諦めてサル山へお帰り。
93:132人目の素数さん
21/06/29 05:03:34.99 TVEvPXLO.net
>>87
>>80はあなたに言っているんですよ
94:132人目の素数さん
21/06/29 05:17:56.02 TVEvPXLO.net
>>81
IUT語でなく日本語でお願いします
95:132人目の素数さん
21/06/29 06:00:44.44 TVEvPXLO.net
Fumiharu Kato
Mathematics that bridges univers
-The shock of IUT theory-
IUT language page 51
「IUT theory is built on a completely
new framework and IUT theory is based
on a completely new framework,
language, and conceptual system
that cannot be described within a
general mathematical paradigm.」
Shinichi Mochizuki who is Professor
of Kyoto University and a Guru of IUT
sect、highly recommend this book
in his foreword
96:132人目の素数さん
21/06/29 06:53:03.73 e86KtvcW.net
>>81
ご参考
URLリンク(www.maths.nottingham.ac.uk)
Schedule of the workshop
URLリンク(www.maths.nottingham.ac.uk)
FOUNDATIONS AND PERSPECTIVES OF ANABELIAN GEOMETRY,
RIMS WORKSHOP, JUNE 28?JULY 2 2021, BY ZOOM
SCHEDULE
Organisers: Benjamin Collas (RIMS), Ivan Fesenko (Univ. of Nottingham), Arata Minamide (RIMS),
Fucheng Tan (RIMS)
(抜粋)
(Kyoto time)
June 29 2021 (Tuesday)
18:00-19:00 Hiroaki Nakamura On arithmetic and geometry around the adelic Eisenstein function
20:30-21:30 Fedor Bogomolov Birational geometry and group theory
June 30 2021 (Wednesday)
19:15-20:15 Emmanuel Lepage
97:The absolute anabelian conjecture for curves with resolution of non-singularities July 1 2021 (Thursday) 18:00-19:00 Takahiro Murotani A p-adic analytic approach to the absolute Grothendieck conjecture July 2 2021 (Friday) 20:30-21:30 Kazumi Higashiyama The mono-anabelian geometry of geometrically pro-p arithmetic fundamental groups of second configuration spaces TITLES AND ABSTRACTS 1. Fedor Bogomolov. Birational geometry and group theory I discuss birational invariants of algebraic varieties which can be derived from the structure of the corresponding Galois groups. I also discuss some related conjectures concerning the structure of the Galois groups and their subgroups. つづく
98:132人目の素数さん
21/06/29 06:54:05.38 e86KtvcW.net
>>91
つづき
2. Kazumi Higashiyama. The mono-anabelian geometry of geometrically pro-p arithmetic fundamental groups
of second configuration spaces
The n-th configuration space of a hyperbolic curve is the scheme which parametrizes n-tuples of pairwise
distinct points in the hyperbolic curve. Mochizuki proved the Grothendieck conjecture for hyperbolic curves.
We discuss a certain pro-p version of the Grothendieck conjecture for hyperbolic curves. In this talk, we
reconstruct group-theoretically the function field of a hyperbolic curve of type (0,3)from the pro-p fundamental
group of the associated second configuration space equipped with the collection of decomposition groups.
4. Emmanuel Lepage. The absolute anabelian conjecture for curves with resolution of non-singularities
The absolute anabelian conjecture asks whether every isomorphism between the etale fundamental groups
of two hyperbolic curves over p-adic fields comes from an isomorphism of curves. This was proved by
S. Mochizuki for curves of quasi-Belyi type. In this talk, I will discuss an extension of this result to a wider family of curves
つづく
99:132人目の素数さん
21/06/29 06:54:28.02 e86KtvcW.net
>>92
つづき
7. Takahiro Murotani. A p-adic analytic approach to the absolute Grothendieck conjecture
Consider a hyperbolic curve X over a finite extension of the field of p-adic numbers. Let π1(X) be its
etale fundamental group. The p-adic absolute Grothendieck conjecture asks: Is it possible to recover X grouptheoretically, solely from π1(X)? To consider this problem, we introduce a certain p-adic analytic invariant
defined by Serre (which we call i-invariant) and discuss the relation between the invariant and the problem.
8. Hiroaki Nakamura. On arithmetic and geometry around the adelic Eisenstein function
We introduce the adelic Eisenstein function arising from the monodromy representation in the universal
family of punctured elliptic curves, and illustrate its basic aspects. If time allows, we discuss a new relation to
some knot theoretic invariants
(引用終り)
以上
100:132人目の素数さん
21/06/29 07:06:01.44 rOyaF8aC.net
>>81
>武谷三男の三段階論をご存じか?
知らん 今は21世紀、令和時代だよ
101:132人目の素数さん
21/06/29 07:09:32.42 rOyaF8aC.net
>>78
>測定した現象と数式は、ローレンツ収縮
問 ローレンツ変換からローレンツ収縮を導け
分かってるならできる筈 やってみせて
102:132人目の素数さん
21/06/29 07:10:16.24 e86KtvcW.net
>>84
>それが如何なる自然数nでも 0<1<…<n は有限列だから 0<1<…<n<ω も有限列。
?
n→∞ の極限をとらないとね、大人の数学ではね
lim n→∞ ( 0<1<…<n )
は、無限列
103:132人目の素数さん
21/06/29 07:14:27.60 e86KtvcW.net
>>95
>>測定した現象と数式は、ローレンツ収縮
>問 ローレンツ変換からローレンツ収縮を導け
??(^^
(>>67より再録)
URLリンク(ja.wikipedia.org)
特殊相対性理論
(抜粋)
4 特殊相対性理論の帰結
4.1 ローレンツ収縮
以下では話を簡単にするため時間1次元+空間1次元の計2次元の場合について述べる。
ある慣性系 (ct',x') において静止している剛体について、この慣性系 (ct′, x′) で測った剛体の長さをこの剛体の固有長さと呼ぶ。
今、固有長さ l の棒が慣性系 (ct′, x′) に対して静止しており、これを別の慣性系 (ct,x) から眺めたとする。
話を簡単にするため、2つの慣性系の原点はいずれも棒の1つの端点 O に一致しているものとする。
棒に対して長さ方向に運動している座標系からみると、棒の長さは
1/γ 倍に縮んだかのように見える。この現象を ローレンツ収縮[33][34]もしくはフィッツジェラルド=ローレンツ収縮[35][36]という。
URLリンク(upload.wikimedia.org)
ローレンツ収縮。図では時間 ct を w で表している。慣性系 (x',w') に固有長さが l の棒(x' 軸の濃い紫)があり、この棒の時空間上の軌跡が薄紫である。それを別の慣性系 (x,w) で計ると長さが
l/γ に縮んで見える。
(引用終り)
以上
104:132人目の素数さん
21/06/29 07:14:39.13 rOyaF8aC.net
>>78
あと、「梯子のパラドックス」とその解決方法についても説明して
URLリンク(en.wikipedia.org)
同時の相対性が受け入れられない人はこのパラドックスで発狂して
反相対論の泥沼にズブズブ沈んでいって二度と出られなくなる
キミはどうかな?
105:132人目の素数さん
21/06/29 07:17:04.26 rOyaF8aC.net
>>97
>>問 ローレンツ変換からローレンツ収縮を導け
>??
言葉抜きで、計算だけで
「棒に対して長さ方向に運動している座標系からみると、
棒の長さは1/γ 倍に縮んだかのように見える。」
ことを示して
君に、で・き・る・か・な
106:132人目の素数さん
21/06/29 07:23:09.34 rOyaF8aC.net
誤解のないようにいっとくけど
「できるわけがない」
といってるわけではないよ
むしろアホらしいほど簡単に導けるけど
ID:e86KtvcW にそれがわかってるか?ってことよ
107:132人目の素数さん
21/06/29 07:36:09.13 rOyaF8aC.net
>>96
>>如何なる自然数nでも 0<1<…<n は有限列だから 0<1<…<n<ω も有限列。
>?
え?マジでわかんないの?(呆)
>n→∞ の極限をとらないとね、大人の数学ではね
なんか三歳児が、皮のかむったお●ん●んをみせつけながら
トンチンカンなこといって大人ぶってますがぁw
>lim n→∞ ( 0<1<…<n ) は、無限列
もし、上記の列が
0<1<…<∞
だと思ってるなら、それは間違いね
0<1<… という無限列は存在するが、
それは ID:e86KtvcW 君が考える
「有限列のナイーブ極限」
ではないね
大人は、万年3歳児が考えるような幼稚なことやってないからw
108:132人目の素数さん
21/06/29 07:56:50.18 e86KtvcW.net
>>101
数学的センスなさすぎでしょ
極限順序数 ω知っていますかぁ~!?(^^
特徴付け:順序数全体の成す類において順序位相(英語版)に関する極限点 (ほかの順序数は孤立点となる)
大人の数学、極限順序数 ωを学びましょう!
(参考)
URLリンク(ja.wikipedia.org)
極限順序数
(抜粋)
任意の自然数よりも大きい最小の超限順序数 ω は、それよりも小さい任意の順序数(つまり自然数)n が常にそれよりも大きい別の自然数(なかんずく n + 1)を持つから、極限順序数である。
順序数に関するフォンノイマンの定義(英語版)を用いれば、任意の順序数はそれより小さい順序数全体の成す整列集合として与えられる。順序数からなる空でない集合の合併は最大元を持たないから、常に極限順序数である。フォンノイマン基数割り当て(英語版)を用いれば、任意の無限基数もまた極限順序数となる。
特徴付け
極限順序数は他にもいろいろなやり方で定義できる:
・与えられた非零順序数でそれより小さい任意の順序数の上限に等しいもの。(後続順序数の場合と比較すれば、後続順序数より小さい順序数全体の成す集合には最大限が存在する(それは直前の順序数である)から、それが上限を与える。)
・最大元を持たない非零順序数。
・適当な α > 0 によって ωα の形に書ける順序数。つまり、カントール標準形において末項としての有限な数を持たない非零順序数。
・順序数全体の成す類において順序位相(英語版)に関する極限点 (ほかの順序数は孤立点となる)。
(引用終り)
以上
109:132人目の素数さん
21/06/29 08:35:42.78 rOyaF8aC.net
>>102
>極限順序数 ω知っていますかぁ~!?
極限順序数の「作り方」知ってますかぁ~w
+1するだけじゃできませんよぉ~w
110:132人目の素数さん
21/06/29 08:39:12.25 rOyaF8aC.net
つまり+1するだけでωになるような順序数は存在しない
ωより小さい順序数nはみな自然数である
したがってωからどう>で降りて行っても
最初のステップで自然数nに降りていかざるを得ず
その結果として有限回で0に到達せざるを得ない
これ豆な わからない猿回し君は正真正銘の白痴な は・く・ち
ギャハハハハハハ!!!(嘲)
111:132人目の素数さん
21/06/29 08:42:59.22 rOyaF8aC.net
猿回しにωなんかわかるわけないから
さっさと宿題の>>98-99 やってみせてねw
ただの線型代数の問題だからさ
理系大学卒ならできるよね
あ、実は中卒だから無理か?
ギャハハハハハハ!!!(嘲)
112:粋蕎
21/06/29 10:38:37.44 Az4lAWxJ.net
>>80のレスが一昔前に流行ったEM菌の売り文句に酷似している…
↓
80のレスをEM菌論の話に変えてみた
そろそろ気づいたら
113:、 EM菌論を応援するとはEM用語を話し 基盤も言語もこちらの科学と 全く異なる科学に住んでいるんだよ。 EM菌論のエネルギー収支論も全く異なるから 間違いではなく間違ってすらいない。 「エネルギー保存則」がゆがんで 復元不能だよ ↑ 完全に論破されたけどな!!
114:粋蕎
21/06/29 11:11:08.23 Az4lAWxJ.net
遠アーベル幾何じゃのIUT幾何じゃの述べとるが、そもそもIUTの構築理念はn進乗法とp-進乗法の架け橋に過ぎんじゃろ
なら新しく判るのは高々『既に知られた事実の明敏化』じゃろ
万が一裾野が大きく広がる成果を得たとしても現在の数学の根幹も数学外理学の根幹も揺るぐ事は無い
歪むのはローレンツ変換じゃのうて>>1の精神じゃ
115:粋蕎
21/06/29 11:13:15.84 Az4lAWxJ.net
まぁそのIUTが本当に使い物として完成しとるしとらん以前に信憑性に疑惑が世界中から湧いとる訳じゃが
116:132人目の素数さん
21/06/29 12:54:49.07 8cJWwM/o.net
>>107
Newtonにはもう少し詳しく
まあ真面目に触れてあった
117:132人目の素数さん
21/06/29 13:17:25.31 FlJqw33a.net
>>96
>n→∞ の極限をとらないとね、大人の数学ではね
>lim n→∞ ( 0<1<…<n )
<列列(誤記ではないので念の為)の極限の定義を示せ。
示せなければサルの妄想に過ぎない。
118:132人目の素数さん
21/06/29 13:46:09.63 FwWVTEXo.net
>>109
あなたも頭がゆがんでいますよ
119:132人目の素数さん
21/06/29 15:12:16.47 Ji8PMbzv.net
>>104
(引用開始)
したがってωからどう>で降りて行っても
最初のステップで自然数nに降りていかざるを得ず
その結果として有限回で0に到達せざるを得ない
これ豆な わからない猿回し君は正真正銘の白痴な は・く・ち
(引用終り)
フッ
白痴は自分だろ?
なにも、そこまで「自分はバカ」って公言しなくても
良さそうなものだが
バカも底なしとは
お前のことだよ
120:132人目の素数さん
21/06/29 17:06:08.55 FlJqw33a.net
>>112
つまりID:Ji8PMbzvくんの主張は「<無限列 0<1<…<ω が存在する」でいい? Y/N
白痴でないつもりなら逃げずに答えてね
121:132人目の素数さん
21/06/29 18:35:32.01 rOyaF8aC.net
>>112
>フッ 白痴は自分だろ?
いや、おまえだよ、猿回し君
ωからまず>で次の順序数xにおりてみてくれ
そこから無限列ができるというなら、今、ここで、やってみせてくれ
できない貴様が誰の目にも白痴だとわかる
だからいってるだろう 中卒には数学は無理だと
122:132人目の素数さん
21/06/29 18:37:31.47 rOyaF8aC.net
猿回しはとにかく昼間は会社から馬鹿発言書くのはやめような
貴様のような馬鹿を飼ってる会社が恥をかく
123:132人目の素数さん
21/06/29 22:59:54.49 e86KtvcW.net
>>113-115
フッ
サルが二匹か
一匹は、テンプレ>>5のサイコパスおサル
もう一匹は、時枝記事不成立が分からない、無限列も分からない、おサルさん
答えてはやらん
晒し者にしてやる
(>>104より引用開始)
したがってωからどう>で降りて行っても
最初のステップで自然数nに降りていかざるを得ず
その結果として有限回で0に到達せざるを得ない
これ豆な わからない猿回し君は正真正銘の白痴な は・く・ち
(引用終り)
笑える
おまいらサルに味方する人はいない!!
皆無ですw
気付よ、それで
自分たちの間違いによ
そもそも
前スレ >>968で、”もう議論としてあなたは詰んでしまってるんで
てか一週間経って俺がいなくなってそうな状態を見計らっての、突然の勝利宣言は流石に笑える
どんだけ悔しかったんだ”って笑われているだろ?! w(^^
124:132人目の素数さん
21/06/30 01:48:32.05 sV4MVGQi.net
>>116
逃亡ザルが何を言っても無駄だと分からない?
まあサルだから無理かw
125:132人目の素数さん
21/06/30 05:57:57.23 dWw+JPRb.net
>>91 追加
講演者で、RIMS以外の人2名
Yu Iijima (
126:Hiroshima University) Emmanuel Lepage (IMJ, Sorbonne University) https://www.maths.nottingham.ac.uk/plp/pmzibf/files/June2020.html Combinatorial Anabelian Geometry and Related Topics, RIMS workshop, July 5 - July 9, 2021 https://www.maths.nottingham.ac.uk/plp/pmzibf/files/schedule2.pdf RIMS/Symmetries and Correspondences Workshop: Combinatorial Anabelian Geometry and Related Topics Dates: July 5 ? July 9, 2021 (抜粋) July 9 (Friday) 17:50 ? 18:50 Yu Iijima (Hiroshima University) On the centralizer of the image of the universal outer monodromy representation of the moduli stack of pointed hyperbolic curves 20:30 ? 21:30 Emmanuel Lepage (IMJ, Sorbonne University) Resolution of non-singularities Abstracts Speaker: Yu Iijima Title: On the centralizer of the image of the universal outer monodromy representation of the moduli stack of pointed hyperbolic curves Abstract: As an application of the combinatorial anabelian geometry, under a condition concerning cuspidal inertia subgroups, Y. Hoshi and S. Mochizuki calculated centralizers of images of geometric outer monodromy representations of certain families of hyperbolic curves. In this talk, I discuss this condition. Speaker: Emmanuel Lepage Title: Resolution of non-singularities Abstract: A hyperbolic curve over Cp satisfies resolution of non-singularities if quotients by Galois group of stable models of finite ´etale Galois covers are cofinal among semistable models. This technical property has several anabelian applications. In this talk we will explain why Mumford curves satisfy resolution of non-singularities. (引用終り) 以上
127:132人目の素数さん
21/06/30 05:59:11.64 sM8+YnJK.net
>>116
誤 答えてはや"ら"ん
正 答えてはや"れ"ん
そりゃそうだろ
自分が間違ってるもんな
<列も「箱入り無数目」も
128:132人目の素数さん
21/06/30 06:01:55.69 sM8+YnJK.net
>>116
>笑える
>おまいらサルに味方する人はいない!!
>皆無ですw
猿回し、毎度のごとくサルにひっかかれまくって必死の叫びw
笑われてるのは、あんただよ あんたw
みんなあんたが間違ってるってわかってるよ あんただけだよ、わかってないのはw
129:132人目の素数さん
21/06/30 06:09:45.98 sM8+YnJK.net
>>116
>気付よ、それで
>自分たちの間違いによ
お前がな、猿回し
0<1<・・・<n<ω はすべて有限列
なぜなら、nは自然数だから
0<1<・・・ という無限列の右側に
<ωをくっつけることはできない なぜなら
0<1<・・・ の右端に項がないから
いいかげん 気づけ こんな簡単な「誤り」w
「箱入り無数目」も同様
箱の中身の確率分布をいくら独善的に決めたって無意味
そもそもある一つの箱を決めて、その中身を当てるゲーム
ではないから
いいかげん 気づけ こんな簡単な「誤り」w
130:132人目の素数さん
21/06/30 06:11:18.12 dWw+JPRb.net
>>118
参考「遠アーベル幾何」”Anabelian geometry can be viewed as one of generalizations of class field theory. Unlike two other generalizations - abelian higher class field theory and representation theoretic Langlands program - anabelian geometry is highly non-linear and non-abelian.”
URLリンク(en.wikipedia.org)
Anabelian geometry
(抜粋)
More recently, Mochizuki introduced and developed a so called mono-anabelian geometry which restores, for a certain class of hyperbolic curves over number fields or some other fields, the curve from its algebraic fundamental group. Key results of mono-anabelian geometry were published in Mochizuki's "Topics in Absolute Anabelian Geometry."
Anabelian geometry can be viewed as one of generalizations of class field theory. Unlike two other generalizations - abelian higher class field theory and representation theoretic Langlands program - anabelian geometry is highly non-linear and non-abelian.
URLリンク(ja.wikipedia.org)
遠アーベル幾何学
(抜粋)
曲線上のグロタンディークの予想の定式化
「遠アーベル的問題」とは次のように定式化される。
「 多様体 X の同型類についてのどのくらいの情報が、エタール基本群(英語版)(etale fundamental group)の知識には含まれているのであろうか?[2] 」
具体
131:例は、多様体が射影的と同様にアフィン的な場合である。有限生成な体 K (その上の素体)上に定義された滑らかで既約な場合を想定し、与えられた双曲線 C に対し、つまり、種数 g の射影代数曲線内の n 個の点の補空間に対し、 2 - 2g - n < 0 とする。 つづく
132:132人目の素数さん
21/06/30 06:11:50.19 dWw+JPRb.net
>>122
つづき
グロタンディークは、射有限群である C の代数的基本群 G が C 自身を決定する(つまり G の同型類が C の同型類を決定する)と予想した。このことは望月新一により証明された[3] g = 0(射影直線)で n = 4 の場合の例が与えられ、このとき、C の同型類が K の中の削除される 4つの点の連比により決定される。(ほとんど、連比で 4つの点の順序であるが、点を取り去ると存在しない。)[4] K が局所体の場合の結果もある[5]。
URLリンク(www.math.sci.osaka-u.ac.jp)
中村 博昭 (Hiroaki NAKAMURA)大阪大学
(抜粋)
ガロア理論の現代版が私の研究のメインテーマです. ガロア群の概念は20世紀に入るとグロタンディークにより「数論的基本群」の概念に拡張され、代数的数のガロア群と位相幾何的なループのなす基本群の間の緊密な相互関係の発見(ベリーの定理)を契機に「遠アーベル幾何」という分野が生まれました。そこには代数曲線やそのモジュライ空間の被覆の系列の制御という重要な問題が横たわり、さらに深い数論的現象が立ち現れることが伊原理論により明らかになっています。 有理点や定義体に関わるディオファントス問題やガロアの逆問題、アソシエーターと呼ばれる非可換級数の性質を調べる問題など多岐にわたる分野が絡み合って活発に進展しているのみならず、関係する古典的な代数的数論や保形関数論の奥行きは深く、また応用する現代的な数論幾何学の間口も広いので勉強が大変ですが、重要な未解決問題も数多く残されています。少しでも解明に向けて前進したいと考えています。
(引用終り)
以上
133:132人目の素数さん
21/06/30 06:13:27.76 sM8+YnJK.net
>>116
>もう議論としてあなたは詰んでしまってるんで
議論?いつだれがどこで議論してるんだ?
君が勝手にデッチあげた自称数学科君だけだろうw
<列の定義も知らず(知ろうとせず)
勝手にゆるい定義をでっち上げて(すりかえて)
ほら、無限列ができた!と一人はしゃぐ
中卒馬鹿野郎の「自称数学科卒」www
134:132人目の素数さん
21/06/30 06:14:23.38 dWw+JPRb.net
>>121
(引用開始)
0<1<・・・<n<ω はすべて有限列
なぜなら、nは自然数だから
0<1<・・・ という無限列の右側に
<ωをくっつけることはできない なぜなら
0<1<・・・ の右端に項がないから
いいかげん 気づけ こんな簡単な「誤り」w
(引用終り)
笑えるよ
晒し者の上塗りだな
上記どこが間違っているのか
気付かないおサルさんでしたとさ(^^
135:132人目の素数さん
21/06/30 06:19:17.49 sM8+YnJK.net
>>116
>てか一週間経って
>俺がいなくなってそうな状態を見計らっての、
>突然の勝利宣言は流石に笑える
ん?猿回しが「自称数学科卒」を演じるのに疲れて勝手にやめただけだろ
そんな貴様の身勝手な都合なんかしらんよ
俺たちは誰一人としておまえじゃないんだから
おまえが中卒としてどんな恥をかこうが痛くも痒くもない
だいたい、馬鹿な「オウンゴール発言」をやらかしてるのは猿回し、おまえだよw
恥かくのがいやなら黙れよ おまえは口を開けば間違いしかいわない●違いだからなw
いい加減自分が中卒の白痴だって気づけよ 知能指数70程度だろ
>どんだけ悔しかったんだ”って笑われているだろ?!
おまえがいままでの人生でどんだけ馬鹿馬鹿言われて悔しかったか想像はつくが
「アルジャーノンに花束を」の主人公じゃあるまいし、
いきなり賢くなって昔の仇を取るとかありえないから
おとなしく田舎の畑でトマトでもつくってろ(グロタンディクか!)
136:132人目の素数さん
21/06/30 06:22:04.19 sM8+YnJK.net
>>125
>上記どこが間違っているのか気付かない
「0<1<・・・ という無限列の右側に
<ωをくっつけることはできない」
がどうしても受け入れられない中卒の猿回しw
>笑えるよ
おまえがなwww
>晒し者の上塗りだな
こいつ日本語も知らんのか?
「恥の上塗り」っていうんだよ
猿回し、おまえのことだよ
ギャハハハハハハ!!!
137:132人目の素数さん
21/06/30 06:38:43.71 sM8+YnJK.net
猿回しは今日も利口ぶって他人にマウントしようとコピペに精出すが
中身が分かってないから猿の質問に自信満々と「間違った答え」を返し
オウンゴールで大恥かいて笑われる
結論
猿回しがトム
猿がジェリー
138:132人目の素数さん
21/06/30 07:32:37.32 dWw+JPRb.net
>>124
(引用開始)
君が勝手にデッチあげた自称数学科君だけだろうw
<列の定義も知らず(知ろうとせず)
勝手にゆるい定義をでっち上げて(すりかえて)
ほら、無限列ができた!と一人はしゃぐ
中卒馬鹿野郎の「自称数学科卒」www
(引用終り)
重箱の隅で恐縮だが
・”自称”ではないな。おれが、”数学科”だろうと言っているだけだよ
・一人は、前スレのID:jA2rtNGF氏で、例えば下記発言から、”数学科”出身だと推察したのです
(引用開始)
スレリンク(math板:494番)-
494 名前:132人目の素数さん[] 投稿日:2021/06/20(日) 10:38:13.59 ID:jA2rtNGF [2/16]
自分で数式は書けません、相手の数式のどこが間違ってるかも具体的には答えられませんて、完全な敗北宣言で草
数学的な議論ができない、数学科落ちこぼれってのは悲しいねえ
506 名前:132人目の素数さん[] 投稿日:2021/06/20(日) 11:47:32.29 ID:jA2rtNGF [4/16]
0<1<2<...<ω
と書いたら、<ωの隣には必ず直前の項が必要とかさ、この記法に世界中でコンセンサスが取れてるわけないじゃん。
そんなこと言い始めたら0,1,2...,ωとかいたら「,ω」には直前の項が必要になるのか?ならんでしょ。
上昇列の定義も結局かけてないし、君が数学科で落ちこぼれて教授に虐められていた姿が目に浮かぶわ。
(引用終り)
・もう一人は、 (下記)ID:H9G4VwdLさん、定義を確認しながら議論しているけど、ID:jA2rtNGF氏に比べると弱気なので、数学科生かなと思ったんだ(^^
(引用開始)
スレリンク(math板:381番)-
381 名前:132人目の素数さん[] 投稿日:2021/06/19(土) 11:02:40.60 ID:H9G4VwdL [2/4]
>>378
「数学における上昇列」とは?
>>379
「<列」の定義があなたとこちらでは違うという話だな
曖昧な単語で結論づけてしまったことに落ち度があるということで落ち着いてる
413 返信:132人目の素数さん[] 投稿日:2021/06/19(土) 14:12:33.63 ID:H9G4VwdL [4/4]
>>411
>>179でこの定義でいい?と確認したけどね
(引用終り)
以上
139:132人目の素数さん
21/06/30 08:18:36.27 dWw+JPRb.net
>>127
おサルさー、おれとしたら
下記のω論争
(>>104より 引用開始)
したがってωからどう>で降りて行っても
最初のステップで自然数nに降りていかざるを得ず
その結果として有限回で0に到達せざるを得ない
これ豆な わからない猿回し君は正真正銘の白痴な は・く・ち
(引用終り)
で、アンチのおサルを叩くのが話が早いんだ
かなりスレ違いだけどね(^^
(参考)
前スレ Inter-universal geometry と ABC予想 (応援スレ) 55
スレリンク(math板:878番)-880
878 名前:132人目の素数さん[sage] 投稿日:2021/06/26(土) 15:51:08.16 ID:WHt+ONlA [8/14]
IUTに疑義を感じるのは分かる。別に自由に批判すればいいと思う
でもIUTを応援すると「愛国バカ」になるというロジック分からんね
880 名前:132人目の素数さん[sage] 投稿日:2021/06/26(土) 15:53:37.26 ID:WHt+ONlA [9/14]
「IUT支持
140:」と「愛国ポルノ」って君がかってに結びつけてるだけだよね (引用終り) これ、”「IUT支持」と「愛国ポルノ」って君がかってに結びつけてるだけ”、”ロジック分からん” ってのは水掛け論にしかならないよね だが、ω論争を通じて、おサルのロジック破綻を示すことができれば、その方が話は早いんだ おサルさん、はっきり言って、反日バイアスかかっているよね IUTに対するアンチの主張もその流れだよね で、反日バイアスに反論するより、おサルのロジック破綻を示すことができれば、その方が話は早いんだ 以上
141:132人目の素数さん
21/06/30 11:03:02.78 sV4MVGQi.net
>>125
ID:dWw+JPRbはどこが間違っているのか言えない間違ってる間違ってる詐欺のおサルさんでしたとさ(^^
142:132人目の素数さん
21/06/30 11:11:08.15 sV4MVGQi.net
>>129
><ωの隣には必ず直前の項が必要とかさ
だから聞いてるじゃん
不要だと言うなら「<0」の真偽を答えろと
直前の項が無くても命題なんだろ?なら真偽を答えらえるよな?
おまえが逃げ続けてるだけじゃん逃亡ザル
143:132人目の素数さん
21/06/30 11:26:09.92 sV4MVGQi.net
逃亡しかできないサルは人里に降りてくんなと言ってるのが分らんか?
サルだから分からん?
144:132人目の素数さん
21/06/30 13:48:41.80 zwo/ti+J.net
>>131-133
いやだよ
答えないよ
あんたは、前スレで負けたんだ
おれが下手に答えたら、前スレのID:jA2rtNGF氏の勝利にドロを塗る結果に成りかねないよね
おサルの狙いもそれだろうがね
その手にはのれないよwww(^^
145:132人目の素数さん
21/06/30 14:08:21.69 sV4MVGQi.net
>>134
>いやだよ
>答えないよ
はい、また逃亡
>あんたは、前スレで負けたんだ
突然の勝利宣言w
>おれが下手に答えたら、前スレのID:jA2rtNGF氏の勝利にドロを塗る結果に成りかねないよね
誰だよそれw 前スレ自体しらねーしw
146:132人目の素数さん
21/06/30 15:19:38.83 lApnQ5LI.net
SetAはブーメラン無自覚の「無敵の人」だから負け(たと認識でき)ないだろ、
何せSetAは「非学者は論に負けず」の諺の典型例中の典型例である代表例だからな。
瀬田 Seta SetA Set_A 集合A 無職A 無所得A
いやぁ実に瀬田の老後は真っ暗だなぁ、生活保護受給も無理だろ。放浪か?
147:132人目の素数さん
21/06/30 15:48:06.32 rnPoXraT.net
>>109
すっかり騙されたぜ
20ページも使って煙に巻くとは思わなかった
148:132人目の素数さん
21/06/30 15:56:08.47 zwo/ti+J.net
>>137
>すっかり騙されたぜ
> 20ページも使って煙に巻くとは思わなかった
・ニュートンの読者層を考えたら、あんなものでしょ
・つーか、加藤文元本よりは、よくわかった
・あとは、4回の国際会議が終わる10月~年末にかけて、数学セミナーに特集記事でもでないかなと思っている
・数学セミナーくらいになると、いつものフィールズ賞解説レベル程度にはなるんだろうと思っているんだ
149:132人目の素数さん
21/06/30 16:06:45.86 rnPoXraT.net
>>138
そこまでNewtonを貶めなくても……
まるで素粒子モデルのような雰囲気だけのカラーイラストは酷いと思ったが
150:132人目の素数さん
21/06/30 17:06:56.63 zwo/ti+J.net
>>139
>そこまでNewtonを貶めなくても……
>まるで素粒子モデルのような雰囲気だけのカラーイラストは酷いと思ったが
・おとしめているつもりではないけれど
・自分も最初は分かっていなかったけれど
・「宇宙」の意味が、加藤本やNewton本を読む一般読者では、物理の宇宙と、数学(基礎論)の宇宙と、区別がついていない
・というか、その区別というこ難しいことは、あえてしないで、誤解をさせておいて
・「宇宙と宇宙をつなぐ数学か! すごいじゃないか!!」というのりで、売りまくる
・それはそれで、数学の普及という意味では、ありと思う
・ちょうど、将棋で「王手は、王手って声をださないとマナー違反だよ」レベル
151:の人が、「藤井聡太さんすごい」と国民的英雄視するのと同じで、それはそれであり でもね、群も環も複素関数も楕円曲線も遠アーベルもなんにも無しで (もちろん、そういう単語を出すごとに、本や雑誌が売れなくなるのを承知で言っているが) これが分かり易い説明 と言われてもね 中学生や高校生にはそうかも知れないけれど ってことです(^^
152:132人目の素数さん
21/06/30 17:25:23.90 zwo/ti+J.net
>>140 補足
そういえば、Newton 小山先生解説では
ガロアの代数方程式の理論のアナロジーで解説してあったかな?
多分、下記の中村 博昭先生を中高学生向きにしたような説明だったかも
余談ですが、下記>>91で講演者に”Hiroaki Nakamura”があって、中村先生もIUTを認めたかなと思った次第です
(中村先生は、騒動に巻き込まれたくないのか、IUTに関しては名前が出てこなかったので、どうかなと注目していました)
(>>123より)
URLリンク(www.math.sci.osaka-u.ac.jp)
中村 博昭 (Hiroaki NAKAMURA)大阪大学
(抜粋)
ガロア理論の現代版が私の研究のメインテーマです. ガロア群の概念は20世紀に入るとグロタンディークにより「数論的基本群」の概念に拡張され、代数的数のガロア群と位相幾何的なループのなす基本群の間の緊密な相互関係の発見(ベリーの定理)を契機に「遠アーベル幾何」という分野が生まれました。そこには代数曲線やそのモジュライ空間の被覆の系列の制御という重要な問題が横たわり、さらに深い数論的現象が立ち現れることが伊原理論により明らかになっています。 有理点や定義体に関わるディオファントス問題やガロアの逆問題、アソシエーターと呼ばれる非可換級数の性質を調べる問題など多岐にわたる分野が絡み合って活発に進展しているのみならず、関係する古典的な代数的数論や保形関数論の奥行きは深く、また応用する現代的な数論幾何学の間口も広いので勉強が大変ですが、重要な未解決問題も数多く残されています。少しでも解明に向けて前進したいと考えています。
(引用終り)
(>>91より)
URLリンク(www.maths.nottingham.ac.uk)
Schedule of the workshop
URLリンク(www.maths.nottingham.ac.uk)
FOUNDATIONS AND PERSPECTIVES OF ANABELIAN GEOMETRY,
RIMS WORKSHOP, JUNE 28?JULY 2 2021, BY ZOOM
SCHEDULE
Organisers: Benjamin Collas (RIMS), Ivan Fesenko (Univ. of Nottingham), Arata Minamide (RIMS),
Fucheng Tan (RIMS)
(抜粋)
(Kyoto time)
June 29 2021 (Tuesday)
18:00-19:00 Hiroaki Nakamura On arithmetic and geometry around the adelic Eisenstein function
153:132人目の素数さん
21/06/30 19:11:44.19 sM8+YnJK.net
>>134
>いやだよ 答えないよ
万年三歳児君が怖がってます
wwwwwwwwwwwww
154:132人目の素数さん
21/06/30 19:14:47.76 sM8+YnJK.net
>>134
>あんたは、前スレで負けたんだ
万年三歳児がボクの勝ちだと駄々こねてます
オマエはA宮家のH仁親王か
wwwwwwwwwwww
URLリンク(www.dailyshincho.jp)
放課後、悠仁さまが宮邸に帰宅なさると、
ご学友の代わりに職員が遊び相手になるといい、
「トランプなどカードゲームのお相手を務めるのですが、
悠仁さまは負けると途端にご機嫌を損ねられ、感情を露わになさいます。
そのため職員は、わざと負けて差し上げることもあるというのです」
あのウラナリ小僧は、誰に似たんだろ?母親かな?w
155:132人目の素数さん
21/06/30 19:19:33.52 sM8+YnJK.net
>>134
>おれが下手に答えたら、
>前スレのID:jA2rtNGF氏の勝利に
>ドロを塗る結果に成りかねないよね
ID:jA2rtNGF氏が勝ったと喚いてる●チガイは
万年三歳児の猿回し「セタ―リン」だけだけどw
自分勝手に「ボクちゃん無敵の数学者」を演じて
わけもわからず「完全勝利ィィィィィ」とほざいちゃう
痛々しい大阪の中卒の白痴野郎とは、貴様のことだぞ
156:132人目の素数さん
21/06/30 19:23:50.38 sM8+YnJK.net
猿回しは結局、相対論も理解できないまま
「動くとローレンツ収縮するんだもん」
で終わり 正真正銘の大馬鹿野郎www
こいつがハシゴのパラドックス知ったら
発狂して完全な反相対論者になるなwww
URLリンク(en.wikipedia.org)
157:132人目の素数さん
21/06/30 19:36:40.39 sM8+YnJK.net
ま、これから猿回しがなにかいっても
158:こう返すだけ 「おまえは、乃木坂新4期生の林瑠奈か?!」 https://www.youtube.com/watch?v=7g_2Pywn3sY&ab_channel=%E4%B9%83%E6%9C%A8%E5%9D%8246OFFICIALYouTubeCHANNEL
159:132人目の素数さん
21/06/30 19:42:04.62 iHKsFwUR.net
一週間前のケンカに
突然勝利宣言しちゃうひとが
何言っても説得力ないなw
160:132人目の素数さん
21/06/30 20:34:46.12 dWw+JPRb.net
>>147
同意です
よく分かってらっしゃる
161:132人目の素数さん
21/06/30 23:03:05.31 sV4MVGQi.net
>>147
じゃ俺は勝利宣言してないから問いに答えてくれ
また逃げるのか?
162:132人目の素数さん
21/06/30 23:10:45.16 sV4MVGQi.net
>>148
ID:sV4MVGQi 君が代わりに答えてもいいぞ? 彼に同意するなら彼を助けてやれば?
163:132人目の素数さん
21/06/30 23:29:04.46 dWw+JPRb.net
米国 ロー・スクール 通称ソクラテス・メソッド
ソクラテス式問答法ともいう(下記)
「この方式は問いを立て、それに答えるという対話に基づいている。これは批判的思考を活性化させ、考えを明らかにするためである」
法学では
で、数学で、ソクラテス・メソッド、問答法を導入しようという人が居る
きっと、おサルの算数教室かねw(^^;
人の数学では、「定義と証明」がベースだ。定義もハッキリ言えないサルと問答しても、人の数学にはならんぜw
(参考)
URLリンク(ja.wikipedia.org)
ソクラテス式問答法(Socratic method。別名: エレンコス、反対論証法〔英: method of elenchus〕もしくはソクラテス式討論〔英: Socratic debate〕)は古代ギリシアの哲学者ソクラテスに因んで名づけられた探究の方式であり、個人間の議論の方式である。
概要
この方式は問いを立て、それに答えるという対話に基づいている。これは批判的思考を活性化させ、考えを明らかにするためである。この方式は弁証法であり、しばしば次のような議論を伴う。その議論においては一方の見解を擁護することは疑問にさらされる。この議論において一方の参加者は他方の参加者に何らかの仕方で矛盾したことを言わせることができ、その結果、後者の探究者の見解を強化させることができる。
法学教育での応用
ロー・スクール (アメリカ合衆国)で始められた授業の教授方法で、日本語では通称ソクラテス・メソッドと呼ばれている[1]。主に、過去の事例を使うケースメソッドの授業で使われる。実際にあった事例の資料を渡され(100ページ以上に及ぶこともある)、学生は事前にそれを読んでおくことを指示される。授業が始まると教師がランダムに学生を指名してその事例に関する質問をし、即座に答えさせる。その学生が答えられなかった場合や、その答えに反論がある場合は、他学生が競って答えていく。教師はそれらに対し、解説するのではなく、さらに次々と質問をし続け、学生たちはこの過程を通して考えを整理していき、結論を導き出していく。その過酷な授業風景は、ハーバード大学ロースクールの新入生を主人公にしたアメリカ映画『ペーパーチェィス (The Paper Chase)』(1973) に登場し、一般にも広く知られるようになった。
164:132人目の素数さん
21/06/30 23:48:53.53 sV4MVGQi.net
>>151
誰と人違いしてるのか知らんが、定義とは?
165:132人目の素数さん
21/07/01 05:58:46.69 3XhgUNBM.net
>>151-152
2項関係としての<が常に意味を持つ、すなわち、
<の左右の項が存在する列が<列
これは実に明確な定義である
ただ、猿回し君は、
その定義だと自分の主張が通らないから
理解したがらないだけ
166:132人目の素数さん
21/07/01 06:02:02.39 3XhgUNBM.net
>>153
猿回し君は、言い訳できなくなると、謎の「数学科」キャラをデッチあげて
もっともらしげな数式で、ゆるい定義を捏造し、これが数学だとウソつく悪癖がある
当然、本当の数学科出身者全員から笑い者にされるが、当人だけが気づかない
数学科に一日も在籍したことがないから、なにが数学かが分からない
当然自分がやってるのことの何がどうおかしいか分からない
167:132人目の素数さん
21/07/01 06:04:13.59 3XhgUNBM.net
>>154
恥は知性があって初めて感じられる
誤りを誤りと認識できない馬鹿は恥を感じない
猿回し君は馬鹿だから恥を感じない
誤りを誤りと感じないのは自分にとっては楽かもしれんが
賢くなるチャンスを永遠につかむことができない点では
人間として致命的な欠陥であり サルどころか禽獣にも劣る
168:132人目の素数さん
21/07/01 06:08:59.25 3XhgUNBM.net
>>151
>人の数学では、「定義と証明」がベースだ。
ウソ人のウソ数学は、ウソ定義でウソ定理を証明する
「無矛盾であれば数学」だというのは正しいが
既に定義が存在する数学の定理と否定するのに、
よりゆるい定義を捏造してそこから「反例」を捏造するのは
馬鹿というか●違いのすることである
169:132人目の素数さん
21/07/01 06:15:42.55 3XhgUNBM.net
それにしても自称数学科君は、自分のウソ定義の何がどうウソか分からんらしい
「<が2項関係としての意味を持たなくてもいい」というのは
考えなしにほざいた自分の主張を正当化するためだけの
身勝手な都合にすぎない
そもそも順序数の<列を、
「順序数の”全ての”要素を、順序通りに並べたもの」
と思い込むのが馬鹿であり●違いなのである
まず”全ての”要素を並べよなどとは誰もいってないし
ある要素xがでてきたときに必ず次の要素yが存在して
x>yという関係を満たしていることこそが、
降下列(>列)の最も重大な制約であることは、
ヒトの脳ミソを有するものであれば明らかなのである
170:132人目の素数さん
21/07/01 06:37:54.13 qsSPsAHV.net
>>157
(>>129より引用開始)
前スレ スレリンク(math板:506番)
506 名前:132人目の素数さん[] 投稿日:2021/06/20(日) 11:47:32.29 ID:jA2rtNGF [4/16]
0<1<2<...<ω
と書いたら、<ωの隣には必ず直前の項が必要とかさ、この記法に世界中でコンセンサスが取れてるわけないじゃん。
そんなこと言い始めたら0,1,2...,ωとかいたら「,ω」には直前の項が必要になるのか?ならんでしょ。
上昇列の定義も結局かけてないし、君が数学科で落ちこぼれて教授に虐められていた姿が目に浮かぶわ。
(引用終り)
ここで、ID:jA2rtNGF氏は、3点主張している
1.”0<1<2<...<ω
と書いたら、<ωの隣には必ず直前の項が必要とかさ、この記法に世界中でコンセンサスが取れてるわけないじゃん”
つまり、記法「0<1<2<...<ω」で、”<ωの隣には必ず直前の項が必要”とはされないと
2.”そんなこと言い始めたら0,1,2...,ωとかいたら「,ω」には直前の項が必要になるのか?ならんでしょ”
と上記1の理由付けをしている
3.そして、”上昇列の定義も結局かけてない”
つまり、もともとの議論は、
前スレ スレリンク(math板:158番)
158 名前:132人目の素数さん[sage] 投稿日:2021/06/17(木) 09:25:42.97 ID:40Ayiq4a [9/55]
<上昇列 0<・・・<ω が有限列にしかなり得ない
ことも分からん「考えなしの素人」に数学はムリ
(引用終り)
だったが、上記”上昇列”の定義は?と聞かれているのに、
相手がそれに応えないから”上昇列の定義も結局かけてない”とバッサリ
前スレで、終わった話でしょ
蒸し返しお断りだよ
171:132人目の素数さん
21/07/01 07:58:26.86 3XhgUNBM.net
>>158
>”0<1<2<...<ω と書いたら、
> <ωの隣には必ず直前の項が必要とかさ、
> この記法に世界中でコンセンサスが取れてるわけないじゃん”
考える順序が逆
0<1<2<...<ωが先にあるのではない
「2項関係<で、つないでいく」のいうのが先
だから当然<の左右には項が存在する
それがコンセンサス
それを知らない時点で ID:jA2rtNGF は数学科出身ではない
>記法「0<1<2<...<ω」で、”<ωの隣には必ず直前の項が必要”とはされない
非数学科の馬鹿のいうことなど即、却下な
172:132人目の素数さん
21/07/01 08:03:39.53 3XhgUNBM.net
>>158
>”そんなこと言い始めたら0,1,2...,ωとかいたら
>「,ω」には直前の項が必要になるのか?ならんでしょ”
0,1,2...,ωが、順序に従ったω+1の要素の羅列として、
,を<に置き換えるだけで、<列ができる、と
ID:jA2rtNGF が思ってるとしたら、
これまた、数学科に一日もいたことない馬鹿、とわかるw
そもそも
”0<1<2<...<ω”
で、
”0以上ω以下の、全ての順序数が上記の列に現れなければならない”
と思うのが馬鹿
素人は云ってもいないことを当然だと誤解する
その誤りに気づけない限り、馬鹿から抜け出すことができない
173:132人目の素数さん
21/07/01 08:09:22.12 3XhgUNBM.net
>>158
>”上昇列の定義も結局かけてない”
>”上昇列”の定義は?と聞かれているのに、相手がそれに応えないから
>”上昇列の定義も結局かけてない”とバッサリ
列中に記載される全ての2項関係<が意味を持つ列
すなわち列中の<のすぐ左すぐ右に必ず項が存在する列
と定義されている
つまり日本語を理解する人に対して十二分に応えている
もし、ID:jA2rtNGF が理解しないとしたら
そもそも日本語を理解しない外国人であるか
あるいは自分の考えと合致しない文章を受け入れられない
「人格障害者」であるかのいずれかである
おそらく後者の可能性が高い
人格障害者が何をバッサリ斬ろうが、
それで切り捨てられるのは
自分自身であることに気づけ
174:132人目の素数さん
21/07/01 08:12:09.05 3XhgUNBM.net
>>158
>前スレで、終わった話でしょ
>蒸し返しお断りだよ
ID:jA2rtNGF による「数学科出身者なりすまし」は
確かに大失敗で終わったので、二度と蒸し返されたくないだろうね
(ニヤニヤ)
175:132人目の素数さん
21/07/01 08:17:11.61 qsSPsAHV.net
>>161
その主張は、2021/06/20(日) 11:47:32.29 ID:jA2rtNGF 前スレ スレリンク(math板:506番)
のときに、したら良かったんじゃない?
相手が居なくなったことろに、必死になるおサルさんよw
証文の出し遅れ!
答案提出の締め切りは、過ぎました!!
なお、そんなクソ答案は、出しても無意味と思うがねwww
(参考)
URLリンク(kotobank.jp)
コトバンク
証文の出し遅れ(読み)しょうもんのだしおくれ
精選版 日本国語大辞典「証文の出し遅れ」の解説
しょうもん【証文】 の 出(だ)し遅(おく)れ
事の処置が間に合わないで、時機をのがしたために効力を失うことのたとえ。
※俳諧・本朝文選(1706)一〇・讚賛類・紫芝岡賛〈許六〉「あなかしこあなかしこ。証文の出(ダ)しおくれ、出損(でそん)になる事なかれ」