21/06/17 20:35:12.15 L7j4dqHM.net
>>250 関連貼る
純粋・応用数学9 スレリンク(math板:51番)-
2021/06/16 ID:gpkuWhQq
The ordinal α is compact as a topological space if and only if α is a successor ordinal.
順序数αが(順序)位相空間としてコンパクトであるのは、αが後続順序数であるとき、そのときに限る
(引用終り)
文章を一部だけ切り取ってくるのは、なんだかね
出典を明示しないと
下記“Ordinals as topological spaces”の項にある
URLリンク(en.wikipedia.org)
Order topology
In mathematics, an order topology is a certain topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets.
A topological space X is called orderable if there exists a total order on its elements such that the order topology induced by that order and the given topology on X coincide. The order topology makes X into a completely normal Hausdorff space.
The standa