純粋・応用数学(含むガロア理論)8at MATH
純粋・応用数学(含むガロア理論)8 - 暇つぶし2ch665:関数 G A,<を超限帰納法によって GA,<(a) = { GA,<(x) | x < a } と定義したとき、GA,< の値域 ran(GA,<) を (A, <) の順序数といい、これを ord(A, <) で表す。ある整列集合の順序数であるような集合を順序数と呼ぶ[2]。 順序数の大小関係 順序数の並び方を次のように図示することができる: 0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............, ω + ω, S(ω + ω), S(S(ω + ω)), S(S(S(ω + ω))), .............................. まず、0 が最小の順序数である。その後に S(0) = 1, S(S(0)) = 2, S(S(S(0))) = 3, ... と有限順序数(自然数)が通常の順序で並んでいる。そして、すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である。 つづき




次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch