純粋・応用数学(含むガロア理論)8at MATH
純粋・応用数学(含むガロア理論)8
- 暇つぶし2ch642:tructure. Then R is a strictly well-founded relation if and only if there is no infinite sequence ?an? of elements of S such that: ∀n∈N:an+1 R an Proof Reverse Implication Suppose R is not a strictly well-founded relation. So by definition there exists a non-empty subset T of S which has no strictly minimal element. Let a∈T. Since a is not strictly minimal in T, we can find b∈T:bRa. This holds for all a∈T. Hence the restriction R↑T×T of R to T×T is a right-total endorelation on T. So, by the Axiom of Dependent Choice, it follows that there is an infinite sequence ?an? in T such that: ∀n∈N:an+1 R an It follows by the Rule of Transposition that if there is no infinite sequence ?an? of elements of S such that: ∀n∈N:an+1 R an then R is a strictly well-founded relation. □ つづく
次ページ続きを表示1を表示最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch