純粋・応用数学(含むガロア理論)8at MATH
純粋・応用数学(含むガロア理論)8 - 暇つぶし2ch631:現代数学の系譜 雑談
21/05/28 20:56:40.50 RuIG2yEj.net
>>575
つづき
(追加参考(^^; )
URLリンク(www.cs-study.com)
Zorn の補題と選択公理のお話
by Akihiko Koga
25th Jan. 2020 (Update)
選択公理より弱い命題
従属選択公理(axiom of dependent choice, DC)
集合 X 上の二項関係 R から可算無限個の要素の連鎖 x0 R x1 R x2 ... を作れるという公理.
URLリンク(www.cs-study.com)
命題「整礎集合でなければ無限降下列がある」,対偶をとれば, 「無限降下列の無い順序集合は整礎集合である」の証明にはこれが必要.
ZF集合論のもとでは Lowenheim-Skolem の定理と同値らしい.
(引用終り)
以上

632:132人目の素数さん
21/05/28 21:34:19.98 zRagxKXt.net
>>575
サルが反論できず発狂してます
誰が
>「無限降下列とは、< の関係で左側に無限に続く集合 A の要素列である。
を否定したんだ?レス番号書いてみ?書けないなら数学板から出て行け 発狂ザルお断り

633:132人目の素数さん
21/05/29 07:45:38.83 zzT1yNzi.net
┐(´∀`)┌ヤレヤレ
チョソンはωから降りる最初のステップでつまづいてすっころんでるなw
ω∋n
nをどうえらんでも、自然数しかないんだから、その先の降下列は有限長
つまり、ωの降下列は有限長にしかなり得ないんだよ
こんなことは、降下列の定義に基づいて、論理で考えれば、サルでもわかる
逆にわからんってことは、定義も論理もわからん、🐎🦌というか
🐕🐈以下の存在ってことで、🐓だな 三歩歩くと忘れるしwww

634:現代数学の系譜 雑談
21/05/29 08:12:15.51 fi/E4J7v.net
>>575
>>575
反論? バカか。サルが勘違いしているだけのこと
下記テキストに書いてあるよ。英語が詳しいけどね。証明も引用した。嫁め(^^
つまり、
「可算無限降下列:X の元の無限列 x0, x1, x2, ... で、どんな n についても xn+1 R xn となるようなもの」
だよ。 xn+1 R xn であって、xn R xn+1 ではないよ
まあ、三歳児の知能には難しいかもな
だが、次の「(上方整礎)R の逆関係 R?1 が X 上の整礎関係であるときにいう。このとき R は昇鎖条件を満たすという」
も合わせて読めば、サルでも分かるだろう(^^;
(参考)
URLリンク(ja.wikipedia.org)
整礎関係
定義
集合あるいはクラス X 上の二項関係 R が整礎であるとは、X の空でない任意の部分集合 S が R に関する極小元を持つことをいう[1]。
X が集合であるとき、従属選択公理(英語版)(これは選択公理よりも真に弱く可算選択公理よりも真に強い)を仮定すれば、同値な定義として、関係が整礎であることを可算無限降下列が存在しないこととして定められる[3]。
つまり、X の元の無限列 x0, x1, x2, ... で、どんな n についても xn+1 R xn となるようなものはとれない。
順序集合論(英語版)では、半順序に対応する真の順序 (strict partial order) が整礎関係となるとき、その半順序を整礎(整礎半順序)と呼ぶ。全順序がこの意味で整礎であるとき、整列順序と呼ぶ。
集合 x が整礎的集合 (well-founded set) であることは、∈ が x の推移閉包上で整礎関係となることと同値である。ZF における公理のひとつである正則性の公理は、全ての集合が整礎であることを要請するものである。
関係 R が X 上で逆整礎 (converse well-founded) または上方整礎 (upwards well-founded) であるとは、R の逆関係 R?1 が X 上の整礎関係であるときにいう。このとき R は昇鎖条件を満たすという。
つづく

635:現代数学の系譜 雑談
21/05/29 08:12:50.16 fi/E4J7v.net
>>579
つづき
<英語版>
URLリンク(en.wikipedia.org)
Well-founded relation
(抜粋)
In mathematics, a binary relation R is called well-founded (or wellfounded) on a class X if every non-empty subset S ⊆ X has a minimal element with respect to R, that is, an element m not related by sRm (for instance, "s is not smaller than m") for any s ∈ S.
Equivalently, assuming the axiom of dependent choice, a relation is well-founded if it contains no countable infinite descending chains: that is, there is no infinite sequence x0, x1, x2, ... of elements of X such that xn+1 R xn for every natural number n.[1][2]
References
[1] "Infinite Sequence Property of Strictly Well-Founded Relation". ProofWiki. Retrieved 10 May 2021.
In order theory, a partial order is called well-founded if the corresponding strict order is a well-founded relation. If the order is a total order then it is called a well-order.
In set theory, a set x is called a well-founded set if the set membership relation is well-founded on the transitive closure of x. The axiom of regularity, which is one of the axioms of Zermelo?Fraenkel set theory, asserts that all sets are well-founded.
A relation R is converse well-founded, upwards well-founded or Noetherian on X, if the converse relation R?1 is well-founded on X. In this case R is also said to satisfy the ascending chain condition. In the context of rewriting systems, a Noetherian relation is also called terminating.
つづく

636:現代数学の系譜 雑談
21/05/29 08:13:53.89 fi/E4J7v.net
>>580
つづき
<証明>
URLリンク(proofwiki.org)
proofwiki
Infinite Sequence Property of Strictly Well-Founded Relation
Contents
1 Theorem
2 Proof
2.1 Reverse Implication
2.2 Forward Implication
3 Axiom of Dependent Choice
4 Sources
Theorem
Let (S,R) be a relational s


637:tructure. Then R is a strictly well-founded relation if and only if there is no infinite sequence ?an? of elements of S such that: ∀n∈N:an+1 R an Proof Reverse Implication Suppose R is not a strictly well-founded relation. So by definition there exists a non-empty subset T of S which has no strictly minimal element. Let a∈T. Since a is not strictly minimal in T, we can find b∈T:bRa. This holds for all a∈T. Hence the restriction R↑T×T of R to T×T is a right-total endorelation on T. So, by the Axiom of Dependent Choice, it follows that there is an infinite sequence ?an? in T such that: ∀n∈N:an+1 R an It follows by the Rule of Transposition that if there is no infinite sequence ?an? of elements of S such that: ∀n∈N:an+1 R an then R is a strictly well-founded relation. □ つづく



638:現代数学の系譜 雑談
21/05/29 08:14:25.66 fi/E4J7v.net
>>581
つづき
Forward Implication
Let R be a strictly well-founded relation.
Aiming for a contradiction, suppose there exists an infinite sequence ?an? in S such that:
∀n∈N:an+1 R an
Let T={a0,a1,a2,…}.
Let ak∈T be a strictly minimal element of T.
That is:
∀y∈T:y notR ak
But we have that:
ak+1 R ak
So ak is not a strictly minimal element.
It follows by Proof by Contradiction that such an infinite sequence cannot exist.

Axiom of Dependent Choice
This theorem depends on the Axiom of Dependent Choice, by way of Infinite Sequence Property of Strictly Well-Founded Relation/Reverse Implication.
Although not as strong as the Axiom of Choice, the Axiom of Dependent Choice is similarly independent of the Zermelo-Fraenkel axioms.
The consensus in conventional mathematics is that it is true and that it should be accepted.
Sources
1996: Winfried Just and Martin Weese: Discovering Modern Set Theory. I: The Basics ... (previous) ... (next): Part 1: Not Entirely Naive Set Theory: Chapter 2: Partial Order Relations: Theorem 2
(引用終り)
以上

639:現代数学の系譜 雑談
21/05/29 09:28:31.59 fi/E4J7v.net
まあ、サルには難しわな
三歳児の知能じゃね
お主、数学科出身だって?
よく卒業できたな
無限のこと、なんにも分かってないじゃん
恐るべしFラン

640:現代数学の系譜 雑談
21/05/29 09:35:28.24 fi/E4J7v.net
しかし、その勘違いは、気付かないとだめでしょ
上昇列( or 昇鎖>>579)と、降下列の区別があるって
その区別がないと、無限降下列を禁止したら、無限上昇列も禁止することになるよね
とすると、そんな数学では、無限列が存在できなくなるぞ
(とすると、キメツの無限列車も存在できないよね)
それは、可笑しいよねww(^^;

641:現代数学の系譜 雑談
21/05/29 10:02:39.58 fi/E4J7v.net
>>584 訂正
上昇列( or 昇鎖>>579)と、降下列の区別があるって
 ↓
上昇列と、降下列( or 昇鎖>>579)の区別があるって
かな
 >>579より
「関係 R が X 上で逆整礎 (converse well-founded) または上方整礎 (upwards well-founded) であるとは、R の逆関係 R-1 が X 上の整礎関係であるときにいう。このとき R は昇鎖条件を満たすという」
だからね
日本の数学用語は、難しいね
因みに
同じ箇所を英語では(>>579より)
”A relation R is converse well-founded, upwards well-founded or Noetherian on X, if the converse relation R-1 is well-founded on X. In this case R is also said to satisfy the ascending chain condition. In the context of rewriting systems, a Noetherian relation is also called terminating.”
だが、やっぱ英語でも難しいね(^^;

642:132人目の素数さん
21/05/29 10:18:22.17 zzT1yNzi.net
>>579-585
┐(´∀`)┌ヤレヤレ
チョソンはわかりもせずにコピペしてるね ああミットモナイ
ωの順序を逆転させたら整列順序じゃないよ
0および任意の自然数n={0,…,n-1}は順序を逆転させても整列順序だけどね
ωも同じだとおもってるならチョソンは正真正銘の🐎🦌ヤローだねwww

643:132人目の素数さん
21/05/29 10:21:26.18 zzT1yNzi.net
ωで順序を逆転させたら
0>1>2>・・・
となって、いつまでたっても「底」に辿り着かない つまり、整列集合でない
これ常識 知らん奴は人間じゃないwww
チョソンは人間じゃないどころか🐓🐖🐄にも劣る🐛かw

644:132人目の素数さん
21/05/29 10:28:34.33 beKcuS0o.net
>>579
つまりおまえは、誰かが無限下降列と無限上昇列を間違えたと、そう言いたい訳だな?
レス番号書いてみ?
書けないならおまえの妄想だから数学板から出て行けよ?数学板は妄想


645:ザルお断り。



646:132人目の素数さん
21/05/29 11:39:59.78 zzT1yNzi.net
>>588
>おまえは、誰かが無限下降列と無限上昇列を間違えたと、
>そう言いたい訳だな?
その「誰か」って、チョソン自身じゃね?wwwwwww
だいたいチョソンの誤りってそのパターンだよな
正規部分群で「集合として同じ」と読むべきところを
なにをカン違いしたのか「群として同型」と読み違えるとか
どうせ
「無限下降列をひっくり返したら、無限上昇列だろぉ!」
とか、アサハカな思いつきで間違ったんだろw
0から1づつ増えてく上昇列には ωがないんだから
ωからおりる下降列になりようがないだろ
🐎🦌だねぇぇぇぇぇ 朝鮮高級学校卒のヤンキー野郎 チョソンはwww

647:現代数学の系譜 雑談
21/05/29 11:46:54.70 fi/E4J7v.net
>>558 追加
倉田 令二朗先生
”トポスと高階論理の本質的な同等性をはっきりと示した”
ですと(^^
21世紀はHOLの時代です
URLリンク(www.jstage.jst.go.jp)
トポスの基礎Part I
論理からみたトポス
倉田 令二朗
1983 年 35 巻 1 号 p. 50-69
§0.序論
(1) トポスの登場.トポスはGrothendieck Topos, Lawvereの圏論的集合論と論理の圏論的解
釈の研究1),および伝統的なcHa(complete Heyting algebra)上の直観主義論理の結合としてLaw
vereとTierneyによって生み出された(1970[27]).最初のスロー一ガンは層の理論のinternaliza
tion,すなわちGrothendieck toposの圏論にとっての狸雑な部分2)=集合論的部分をelementary
toposの 有 限 図 式 で書 きか え る こ と で あ った(本 文3.1が そ の は じ ま りで あ る)([10],[ 20],[48]).こ
の方向はinterna1 category論に関するDiaconescu等の精緻な研究([3])を経て徹底して推進され
た([16]2,3,4章)。
(2) トポスによる統合. Lawvereは1975年のシカゴ講演において次のように述べている.`1963
年頃数学の基礎に5つの重要な発展がみられた.すなわち(i) Robinsonのnon standard analysis,
(ii) Cohenに よ る 集合 論 に お け る独 立 性 の証 明, (iii)直 観 主 義 的述 語 論理 に お け るKripke解 釈,
(iv) Lawvereによる集合圏のelementary theory, (v) Grothendieck toposにおけるGiraudの
理論がそれであり,これらは7年後LawvereとTierneyによって統合された"と3).またBoileau
とJoya1は1981年の論文[52]でさらに代数幾何,微分幾何,解析的幾何,代数的位相幾何, coho
mologie, homotopie,ガロアの理論への広がりを指摘している.つまりトポスは数学の新しい統合
の一つのパラダイムのはじまりだというわけである.
(3) トポスの課題.トポスが新しい数学統合の形式だということは,つまりこれまでの数学の体
系において一元的に集合論の占めていた地位のかなりの部分にトポスがとってかわろうということ.
である.しかしそのためには第一に,
つづく

648:現代数学の系譜 雑談
21/05/29 11:47:51.40 fi/E4J7v.net
>>590
つづき
(4)高階直観主義論理とトポス.この間の深い関係についてはLawvereによってつとに指摘されていたが,
完全性定理�


649:フ形式で,しかもトポスと高階論理の本質的な同等性をはっきりと示したのはFourman(1974[6],[7])が最初である. ここで2つの流派が生じる.われわれが対象とする論理は直観主義論理であり,それが解釈され るトポスは, (5)無限論理とGr0thendieck topos. Lawvereの意図したGrothendieck toposの完全なin ternalizationは不可能であった. Joyal等はLawvereの捨象したGrothendieck toposの集合論 的外延的性質すなわちcompleteな性質を圏論と論理の中核に据える一そのかわリベキを捨象し た一研究の方向を示した. 2.9はMakkai-Reyes[31]によるその方面の成果の素描である.以下 Grothendieck toposをGr-トポスと略称する. (6)層の圏. §3の例はいずれも集合論的に定義されるものであるが参考書をあげるにとどめる. とくにV(H)は竹内外史氏が来日中(1979)にひろめた数々のスローガン, ‘アーベル群(環)の直観 主義化はアーベル群(環)の層である.一変数関数論の直観主義化は多変数関数論である' (5)等を具現 するモデルであり,実例研究のたえざる出発点である([43]) . (7)PartIからみたトポス.トポスと高階論理が同値な概念であるとするならばどちらを出発 点にとるかは諸個人の趣味の問題であり,トポスはけっきょく一つのモードにすぎないといえるか も知れない.けれども論理そのものが新たに圏論的表象を得たという点に新しいパラダイムの特徴 があるのであって,たとえば人はいつでも論理学の研究をsyntaxを経ることなく直接にトポス上 の図式から始めることができる.もっとも今のところトポス自身は‘aは対象である'‘fは射である' を無定義述語とする言語で基礎づけられねばならぬけれども. 原理的には伝統的な枠の中で証明されえた筈の諸定理,4.一2(1),§5のOsiusの結果等がまずトポ スにおいて明らかにされた背後には適切で簡潔な表現へと志向するトポスパラダイムが作用してい たといえよう。 つづく



650:現代数学の系譜 雑談
21/05/29 11:48:13.15 fi/E4J7v.net
>>591
つづき
5.2.集合論のモデルの構成
(3)集合論の論理式φに対するKripke-Joya1解釈.
5.3.結論
(1)NNO25)をもつ任意のトポスEに対し,NNO∈UとなるpreuniverseUは上の解釈でZIO(直観主義的Z0)のモデルとなる.
(2)さらにEがwellpoweredのときuniverseUでco11ectionが,さらにEがcompleteのとき separationが成立つ.
(3)EがGr-トポスでUがuniverseのときZFIのモデルとなる.
(引用終り)
以上

651:現代数学の系譜 雑談
21/05/29 12:00:38.77 fi/E4J7v.net
>>590
倉田 令二朗先生の
Part II を検索したが、ヒットせず
書かれなかったかも
代わりに、下記数理研を貼る(但し手書き原稿)
2001年歿か
URLリンク(repository.kulib.kyoto-u.ac.jp)
Title Grothendieck Toposへの入門試論(数学基礎論)
Author(s) 倉田, 令二朗
Citation 数理解析研究所講究録 (1983), 480: 87-108
Issue Date 1983-02
URLリンク(www.nippyo.co.jp)
日本評論社
著者紹介
倉田 令二朗
くらた れいじろう
プロフィール
1931年香川県丸亀市に生まれる。1954年東京大学理工学部数学科を卒業。その後、東京工業大学大学院、高校教師、日本科学技術研修所電子計算機センター、日本大学文理学部講師、九州大学工学部助手を経て、1964年九州大学工学部助教授。1986年河合文化教育研究所主任研究員。理学博士。
2001年歿。

652:132人目の素数さん
21/05/29 12:05:16.33 zzT1yNzi.net
>>590
>21世紀はHOLの時代です
19世紀にできた実数の定義も理解できんチョソンは
時代から100年以上遅れてるなwwwwwww

653:132人目の素数さん
21/05/29 12:06:18.56 zzT1yNzi.net
チョソンが大量コピペ始めたら
メンタルボロボロだとおもっていいwww

654:132人目の素数さん
21/05/29 12:08:46.16 zzT1yNzi.net
チョソンのメンタルの頂点
「いい気になって検索結果をコピペしまくってるとき」
チョソンのメンタルの底
「いい気になって書いたことのアラをつっこまれて
 どう返しても自分が負けるしかないとわかったときwww」
このとき、突如コピペしまくって無理矢理盛り返すwwwwwww

655:132人目の素数さん
21/05/29 12:29:19.21 beKcuS0o.net
>>590-593
レス番号示せずまた逃亡。
やはりサルの妄想だった。
妄想ザルは数学板から出て行け。

656:現代数学の系譜 雑談
21/05/29 12:57:31.12 fi/E4J7v.net
竹内さんの
『層・圏・トポス』→HOL(高階論理)
人が日常で思考するとき、一階述語論理には縛られない
ですが、多分数学の多くの記述が、一階述語論理なのでしゅう(厳密には知らないが)
そこに。Grothendieck が、Toposを考えた>>590 >>593
高階論理を意識していたかどうか、不明だが?
ともかく、倉田, 令二朗先生によれば、高階直観主義論理と関係しているらしい
一階述語論理よりも、強力です
21世紀は、やはり
HOL(高階論理(層・圏・トポスなど))の時代でしょうかね(^^
(参考)
URLリンク(m-hiyama.)はてなブログ/entry/20090430/1241049766
檜山正幸のキマイラ飼育記 (はてなBlog)
2009-04-30
竹内さんの『層・圏・トポス』を読む人達へ
(抜粋)
「読む人達へ」とはいっても一般論ではなくて、ジョニーが『層・圏・トポス』を読む勉強会をするらしいので、このメンバーへ老婆心から二三言っておきたいことです。
(引用終り)
以上

657:現代数学の系譜 雑談
21/05/29 13:01:54.70 fi/E4J7v.net
サル二匹
必死の取り繕い
笑えるなw(^^;

658:132人目の素数さん
21/05/29 13:33:41.09 beKcuS0o.net
>>599
妄想ザルさん
早くレス番号示してね

659:132人目の素数さん
21/05/29 13:35:11.72 beKcuS0o.net
>>599
それで ω∋…∋1∋0 が∈有限下降列であることは理解できましたか?
サルだから無理かな?

660:現代数学の系譜 雑談
21/05/29 14:58:02.33 fi/E4J7v.net
>>579
>「可算無限降下列:X の元の無限列 x0, x1, x2, ... で、どんな n についても xn+1 R xn となるようなもの」
>だよ。 xn+1 R xn であって、xn R xn+1 ではないよ
<補足>
Rが、抽象的な順序 関係なので、分からない人もいるだろうから説明する
まず、R を実数の大小関係 < に限るとする
1)xn R xn+1は、上昇列 (例 1 < 2< 3<・・(番号が増えるほど大きくなる))
2)xn+1 R xnは、降下列 (例 1/1>1/2>1/3>・・(番号が増えるほど小さくなる))
(注;ここは、有限列で考えても(大して意味がないので)分かりにくい。可算無限列で考えると、(その重要性の)意味が分かる)
そして、順序関係の標準が、(下記)”順序数”です
それから、列の長さは、列の項の数で決まる。有限や可算無限なども、項の数で決まる(順序数で計量する)
結論からいうと、
可算無限長の上昇列 1<2<3<・・<ω があったとして、
これが、降下列に変わったりしません
あくまで、上昇列は上昇列
そして列の長さは、あくまで可算無限長であって、決して有限長などにはなりませんw(^^;
(参考)
URLリンク(ja.wikipedia.org)
順序数
定義
整列集合 (A, <) に対して、A を定義域とする関数 G A,<を超限帰納法によって
GA,<(a) = { GA,<(x) | x < a }
と定義したとき、GA,< の値域 ran(GA,<) を (A, <) の順序数といい、これを ord(A, <) で表す。ある整列集合の順序数であるような集合を順序数と呼ぶ[2]。
順序数の大小関係
順序数の並び方を次のように図示することができる:
0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............, ω + ω, S(ω + ω), S(S(ω + ω)), S(S(S(ω + ω))), ..............................
まず、0 が最小の順序数である。その後に S(0) = 1, S(S(0)) = 2, S(S(S(0))) = 3, ... と有限順序数(自然数)が通常の順序で並んでいる。そして、すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である。
つづき

661:現代数学の系譜 雑談
21/05/29 14:58:34.10 fi/E4J7v.net
>>602
つづく
URLリンク(ja.wikipedia.org)
極限順序数
極限順序数(きょくげんじゅんじょすう、英: limit ordinal)は 0 でも後続順序数でもない順序数を言う。あるいは、順序数 λ が極限順序数であるための必要十分条件は「λ より小さい順序数が存在して、順序数 β が λ より小さい限り別の順序数 γ が存在して β < γ < λ とできることである」と言ってもよい。任意の順序数は、0 または後続順序数、さもなくば極限順序数である。
例えば、任意の自然数よりも大きい最小の超限順序数 ω は、それよりも小さい任意の順序数(つまり自然数)n が常にそれよりも大きい別の自然数(なかんずく n + 1)を持つから、極限順序数である。
(引用終り)
以上

662:現代数学の系譜 雑談
21/05/29 15:17:19.99 fi/E4J7v.net
>>602 補足
> 1)xn R xn+1は、上昇列 (例 1 < 2< 3<・・(番号が増えるほど大きくなる))
>可算無限長の上昇列 1<2<3<・・<ω があったとして、
>これが、降下列に変わったりしません
ここ
集合の∈に換えて
1∈2∈3∈・・∈ω
としても同じです
これは、あくまで、上昇列です。降下列に変わったりしません
なので、正則性公理で禁じられている無限降下列には、該当しません
また、列の長さの計量は、可算無限長であって、有限長とする必要はありません!(^^

663:132人目の素数さん
21/05/29 15:30:14.04 zzT1yNzi.net
>>602
>結論からいうと、
>可算無限長の上昇列 1<2<3<・・<ω があったとして、
結論からいうと
可算無限長の上昇列 1<2<3<・・<ω は存在しません!
可算無限長の上昇列 1<2<3<・・  は存在しますが
両者の違い、分かりますかぁ?
お🐎🦌のチョソン君www

664:132人目の素数さん
21/05/29 15:32:51.36 zzT1yNzi.net
>>604
>>可算無限長の上昇列 1<2<3<・・<ω
>ここ、集合の∈に換えて
>1∈2∈3∈・・∈ω
>としても同じです
ええ、<だろうが∈だろうが
可算無限長の上昇列
1∈2∈3∈・・∈ω
は存在しません
可算無限長の上昇列
1∈2∈3∈・・
は存在しますが
両者の違い、分かりますかぁ?
お🐎🦌のチョソン君www

665:現代数学の系譜 雑談
21/05/29 15:42:35.24 fi/E4J7v.net
>>604 追加参考
下記なども見ておくと
参考になるだろう
URLリンク(ja.wikipedia.org)
二項関係
(抜粋)
集合上の関係
集合 X 上の二項関係のいくつか重要なクラスとして、以下のようなものを挙げることができる:
集合的 (set-like)
集合 X の任意の元 x に対して、y?R?x となるような y 全体の成すクラスが集合であるような関係は、集合的(あるいは集合状、集合様)であるという。
(これは真のクラス上の関係を認める場合でないと意味を持たない)
順序数全体の成すクラス上の通常の順序関係 "<" は集合的関係だが、その逆順序 ">" は集合的ではない。
整礎的 (well-founded)
X の任意の空でない部分集合Aが極小元a(Aのどの元xもxRaとならない)を持つときR は整礎的であるという。
自然数上の大小関係"≦"は整礎的である。正則性公理を仮定すると∈は任意の集合上で整礎的である。
(引用終り)
以上

666:132人目の素数さん
21/05/29 15:51:48.63 zzT1yNzi.net
>>602
>これ(上昇列)が、降下列に変わったりしません
>あくまで、上昇列は上昇列
>>604
>あくまで、上昇列です。降下列に変わったりしません
>なので、正則性公理で禁じられている無限降下列には、該当しません
そもそもそんな詭弁を弄するまでもなく
0から始まり、
1)ωに至る
2)可算無限長の
上昇列は存在しません
要するに
1)ωに至る上昇列は有限長です
2)可算無限長の上昇列は、
  a)ωに至らないか 
  b)有限ステップでωを通過してるか
  のいずれかです
なんでこんな「簡単」なことが理解できんかねえ チョソンは
脳ミソ サナダムシに食われてスッカスカなんかねえ
・・・🐖、生で食っただろw

667:132人目の素数さん
21/05/29 15:55:46.58 zzT1yNzi.net
>>607
お🐎🦌のチョソンが何言ってもむだ
>>605-606 >>608で書いた通り
チョソンが
「可算無限長の上昇列 1<2<3<・・<ω」
と書いた瞬間、壮烈な自爆死を遂げた
いやぁ、チョソンはいつでも最初の一歩で
見事に地雷踏んで爆死して見せるよな
ここまで清々しい🐎🦌は珍しいわ
さすが大阪朝鮮高級学校卒
ケンカとセックス以外なんもしてないだろwwwwwww

668:132人目の素数さん
21/05/29 16:03:02.83 vQHS2fLW.net
てすと。

669:132人目の素数さん
21/05/29 16:03:25.38 vQHS2fLW.net
よっしゃぁ。書き込めたぞぉ。

670:132人目の素数さん
21/05/29 16:09:51.23 vQHS2fLW.net
底辺数学科乙。

671:現代数学の系譜 雑談
21/05/29 17:59:49.30 fi/E4J7v.net
>>612
どうも
すれ主です
どなた知らないが、カキコありがとう
ゆっくり遊んでいってください(^^

672:132人目の素数さん
21/05/29 18:23:34.87 HB06e+/w.net
>>613
軍事機密スレ主です。
匿名でいきます。

673:現代数学の系譜 雑談
21/05/29 18:54:01.85 fi/E4J7v.net
>>604 追加
下記、辻下徹 研究室 北大
1999年講義 第4回:<無限>の柔軟性(1):Forcing
自然数の集合ω が良く纏まっているが
コピー規制がかかっていて、コピー貼り付けができない
リンク先を直接見てください
URLリンク(ac-net.org)
辻下徹 研究室 北大
URLリンク(ac-net.org)
1999年講義 (このページは文字化けがひどいが(^^; )
URLリンク(ac-net.org)
1 第1回:数学における不定性
URLリンク(ac-net.org)
4 第4回:<無限>の柔軟性(1):Forcing
目次
4.1 自然数の集合ω
(引用終り)
以上

674:現代数学の系譜 雑談
21/05/29 19:13:29.70 fi/E4J7v.net
>>614
どうも
スレ主です
了解です
宜しくお願いいたします。(^^

675:現代数学の系譜 雑談
21/05/29 19:17:38.08 fi/E4J7v.net
>>615 追加
下記の古賀明彦氏の無限集合ωの説明が分かり易いが
「無限集合は生成できない」は、レーヴェンハイム-スコーレムの定理
”一階の理論はその無限モデルの濃度を制御できない”
”定理の上方部分の証明は、いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならない”
を考えると、無限集合が出来ても、一階の理論では証明できないから、無限公理を置くが正しいかも(^^
URLリンク(www.ivis.co.jp)
(2018年10月21日修正版)
「連続体仮説の解説 AGAIN」
古賀明彦 第434回 わかみず会資料
P28
証明論,モデル理論,レーベンハイム・スコーレムの定理
P38
公理的集合論 ZFC
(1) 集合の種
1.Φが存在する
2.最低でも1つの無限集合ωが存在する
(Φ∈ω & (x∈ω ⇒ x ∪ {x} ∈ω)
{Φ} , {Φ, {Φ}}, ...
P39
公理的集合論 ZFC:集合の種
・ 集合を作っていく道具として,空集合 Φ と1つの無限集合 ω の存在が仮定されている
・ 次に述べる,既存の集合から新しく集合を作る手段が4つ用意されており,Φから任意の(有限の)自然数が生成できるが,無限集合は生成できない
・ そのために最低一つの無限集合としてωの存在が公理で保証されている
・ これが無限集合であるという条件は次のように表されている
Φ∈ω n ∈ω ⇒ n+1 := n∪{n} ∈ ω
つづく

676:現代数学の系譜 雑談
21/05/29 19:18:00.70 fi/E4J7v.net
>>617
つづき
URLリンク(ja.wikipedia.org)
レーヴェンハイム-スコーレムの定理とは、可算な一階の理論が無限モデルを持つとき、全ての無限濃度 κ について大きさ κ のモデルを持つ、という数理論理学の定理である。そこから、一階の理論はその無限モデルの濃度を制御できない、そして無限モデルを持つ一階の理論は同型の違いを除いてちょうど1つのモデルを持つようなことはない、という結論が得られる
定理の上方部分の証明は、いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならないことをも示す。この事実を定理の一部とする場合もある
レーヴェンハイム-スコーレムの定理から導かれる結論の多くは、一階とそうでないものの違いがはっきりしていなかった20世紀初頭の論理学者にとっては直観に反していた。例えば、真の算術 (true arithmetic) には非可算なモデルがあり、それらは一階のペアノ算術を満足するが、同時に帰納的でない部分集合を持つ。さらに悩ましかったのは、集合論の可算なモデルの存在である。それにもかかわらず、集合論は実数が非可算であるという文を満たさなければならない。この直観に反するような状況はスコーレムのパラドックスと呼ばれ、可算性 (countability) は絶対的 (absolute) ではないことを示している
(引用終り)
以上

677:132人目の素数さん
21/05/29 20:20:46.30 beKcuS0o.net
>>605
>両者の違い、分かりますかぁ?
サルにそれを求めるのは酷でしょ
なんせサルですからw

678:132人目の素数さん
21/05/29 21:04:09.30 beKcuS0o.net
>>604
>1∈2∈3∈・・∈ω
>としても同じです
>これは、あくまで、上昇列です。降下列に変わったりしません
1から見れば上昇列、ωから見れば下降列、それだけのことw
アホザルに数学は無理

679:現代数学の系譜 雑談
21/05/29 23:23:50.41 fi/E4J7v.net
>>602
・花木章秀先生、”∀n∈N”は普通です
 つまり、1∈2∈・・∈Nです
・新井敏康先生、順序数に対する”<”の使い方 下記です
 ”0<1<2<・・・ω<ω+1<ω+2<・・・ω+ω<・・・”
 二つの順序数α,βの和α+β
 ”・・・<α α0<α α1<α ・・・●・・・<β b0<β b1<β・・”
(参考)
URLリンク(zen.shinshu-u.ac.jp)
集合論 信州大 花木章秀 2008年6月19日
URLリンク(zen.shinshu-u.ac.jp)
論理の基本 信州大 花木章秀
教材 集合論 2008年6月19日
URLリンク(zen.shinshu-u.ac.jp)
集合論 花木章秀 (2007/12/14)
P9
1.3「任意の...」と「ある...」
「任意の自然数nに対して・・・」ということを記号で「∀n∈Nに対して・・・」
などと書く。
URLリンク(www.jstage.jst.go.jp)
2005Volume57Issue2Pages113-126
論説
Hilbertの第2問題に関する証明論の展開 新井敏康
*) 2004年9月20日 北海道大学における総合講演者
P4
3.1 順序数
二つの整列順序は,同型か一方から他方の始切片への同型写像があることが知られている.そこで
順序数(ordina1)を整列順序の型と(素朴には)定め,順序数の大小は順序型αの順序<αから順序
型βの順序<βの(真の)始切片への同型写像が存在するときα<βと定める.以下,順序型αの順
序の一つを<αと記す.
すると順序数全体は集合ではないがその大小で整列順序になる.その初めのほうは
0<1<2<・・・ω<ω+1<ω+2<・・・ω+ω<・・・
となる.ここでωは自然数全体の順序型で最小の超限(=有限でない)順序数である.
順序数の演算を導入する.まず,二つの順序数α,βの和α+βは次の整列順序の型と定める1
・・・<α α0<α α1<α ・・・●・・・<β b0<β b1<β・・
つまり,初めに順序<αを並べておき,その後に順序<βを置いて得られる順序である.
例えば順序数ω+ωは帰納的である.実際,自然数上でその型は次のように実現できる:
0<2<4<・・・1<3<5<・・
(引用終り)
以上

680:現代数学の系譜 雑談
21/05/29 23:33:33.35 fi/E4J7v.net
>>621 追加
余談ですが、新井敏康先生
下記の証明論、Hilbert 「有限の立場」の意義
”ここに潜んでいるHilbertの考え方はこうである。数学の対象には2種類ある:real
なものとidealなものと。realなものの代表は自然数であり、idealなものの典型は抽
象的・超限的な集合、自然数全体の集合ωのpowersetIP(ω)(=continuum)のpower
setP(P(ω))(realvaluedfunctions),etc.である。”
とか、あるいは
「「有限の立場」で意味がある命題が、Tの公理で表わされた超限的な仮定のも
とに証明されても、それは既に「有限の立場」で確かめ得る」
”Hilbertの眼前には、一方で集合論の逆理があり、他方にその集合論を用いた超限
的で神学的とも評された新しいスタイルの証明があった”
とか
なるほどと思った
URLリンク(www.jstage.jst.go.jp)
証明論について
新井敏康(神戸大学自然科学研究科)
2002年9月27日
概要
P3
2 Hilbert
「有限の立場」での形式的理論Tの無矛盾性証明は何をもたらすだろうか?
「「有限の立場」で意味がある命題が、Tの公理で表わされた超限的な仮定のも
とに証明されても、それは既に「有限の立場」で確かめ得る」となる。
ここに潜んでいるHilbertの考え方はこうである。数学の対象には2種類ある:real
なものとidealなものと。realなものの代表は自然数であり、idealなものの典型は抽
象的・超限的な集合、自然数全体の集合ωのpowersetIP(ω)(=continuum)のpower
setP(P(ω))(realvaluedfunctions),etc.である。realなものに関する命題、例えば
自然数に関する命題でも、∀X1∈ω∃x2∈ω∀X3∈ω∃x4∈ω…R(x1,x2,x3,x4,…)
のように「任意」や「存在」が複雑に入り組んで使用されたなら、idealであると考
える。
つづく

681:現代数学の系譜 雑談
21/05/29 23:33:48.04 fi/E4J7v.net
つづき
Hilbertの眼前には、一方で集合論の逆理があり、他方にその集合論を用いた超限
的で神学的とも評された新しいスタイルの証明があった。後者はL.Kronecker「自
然数は神の御業だが、それ以外の数は人間がつくった」,L.Browerらにより強烈に
批判されていた。そこで、Hilbertは超限的な数学の無制限の使用に制約を加えなが
らそれを擁護しなければならなかった。そのためのひとつの取り得る道筋が、対象
の二分化とidealなものの権利保証として、「idealなものは原理的には単なる「言
葉の綾(figureofspeech)」に過ぎず、realな命題はそれなしでも示し得る」ことを
示していくことにあった。上述のようにそのためには、まずidealな対象に関する
公理を形式化し、こうして得られた形式的理論Tの無矛盾性CON(T)を証明すれ
ばよいどその証明がそこで形式化される形式的理論が正しい限り、Tの公理に成文
化された範囲でのidealなものの権利保証が得られることになる。
(引用終り)
以上

682:132人目の素数さん
21/05/30 00:17:29.45 IHHkwfUH.net
>>621
>0<2<4<・・・1<3<5<・・
だから1の前者は何だと聞いてるんだが
なぜおまえは逃げ続けるのか?

683:132人目の素数さん
21/05/30 04:32:23.29 4LOzs/AI.net
>>620
>>1∈2∈3∈・・∈ω
>>これは、あくまで、上昇列です。降下列に変わったりしません
>1から見れば上昇列、ωから見れば下降列、それだけのことw
ああ、チョソンに騙されたらアカンよ
そもそも
1∈2∈3∈・・∈ω
は、正確に書けば
1∈2∈3∈・・∈n∈ω
で、有限列だから、
無限列にはなりようがないwww

684:132人目の素数さん
21/05/30 04:36:36.24 4LOzs/AI.net
>>621
>・花木章秀先生、”∀n∈N”は普通です
上記から
> つまり、1∈2∈・・∈Nです
は導けない
導けるのは
1∈N
1∈2∈N
1∈2∈3∈N
・・・
みな有限列w
論理を知って正しく考えような
HOL? いやチョソンの独善思考なんか、HOLでも正当化でけへんからw
いいから、生野から出て行って、ピョンヤンに帰れwww

685:132人目の素数さん
21/05/30 04:44:59.14 4LOzs/AI.net
>>621
>・新井敏康先生、順序数に対する”<”の使い方 下記です
> ”0<1<2<・・・ω<ω+1<ω+2<・・・ω+ω<・・・”
それ、「<列」としての記載ではないよw
<列なら、
0<1<2<・・・<n<ω<ω+1<ω+2<・・・<ω+m<ω+ω<・・・
と書かにゃならんよ
つまり、
1)ωの左にすべての自然数が現れる<列は存在し得ない
2)いかなる順序数λにおいても、0からλに到達する<列は有限列
これ、数学の常識な
ウソだと思うなら、新井敏康本人に、メールで直接たずねてみw
www.s.u-tokyo.ac.jp/ja/people/arai_toshiyasu/

686:132人目の素数さん
21/05/30 04:47:49.75 4LOzs/AI.net
どうでもいいが、お🐎🦌チョソンがいくら
「レーヴェンハイム・スコーレムがー」「有限の立場がー」
とわめいても、初歩からつまづいてるから意味ないぞw
いいから数学諦めて、ピョンヤンに帰れwww

687:132人目の素数さん
21/05/30 04:53:59.35 4LOzs/AI.net
>>0<2<4<・・・1<3<5<・・
>だから1の前者は何だと聞いてるんだが
お🐎🦌のチョソンは、順序数の羅列=「<列」と誤解してるんだな
定義を一切確かめない🐎🦌が必ずやらかす誤り
こういうヤツは数学科では確実に死ぬw
<列というからには、<の左と右の項が必ず存在しなくてはならない
これ常識、否定しようもない
新井がー?新井が「<列」として記載したと書いてるか?
ちがうだろ?あくまで初心者にわからせるために「羅列」として書いてるだろ?
チョソンよ、新井敏康本人に
「0から始まってωにいたる無限長の<列は存在しますよね?ね?ね?」
ってメールで直接質問してみ?w
即座にバッサリ否定されるからwww

688:132人目の素数さん
21/05/30 05:01:31.76 4LOzs/AI.net
初心者にわかるようにいってやるが
「0から始まりωにいたる<列の中に、
 ωより小さい全ての自然数nが
 あらわれるようにはできない」
なぜならωは後続順序数でないから
n<ω ならば、 n<m<ωとなる、mが存在するから
いい加減、「鉄道」ではωに到着しないことに気づけ
ωには「飛行機」でしか行けないんだよ
「鉄道」は次々にたどるから、とばすことはないが
「飛行機」は間の順序数をすっとぱす、ってこと
🐒どころか🐄🐖🐓にもわかる実にいい喩えだろ?
これで分からんなら🐛だなwwwwwww

689:132人目の素数さん
21/05/30 07:28:20.63 IHHkwfUH.net
>>625
誰も騙されてない
誰も無限列だと言ってない
キミ字が読めない文盲?

690:132人目の素数さん
21/05/30 07:56:54.30 4LOzs/AI.net
>>631
「キミ」=チョソンね
相手間違うなよ
🐎🦌っていわれなくないだろ?

691:132人目の素数さん
21/05/30 08:13:50.21 drEsiSVi.net
突然ですが、決定番号、閃いたぁぁぁ
モピロン、さらに以前よりも、かなり
決定番号Nが超完璧に解ってきたぁぁ
ホントは無限個の、無限列だが、
でも、4個の無限列で考えてみた。
無限列 s1 = {1,0,0,0,0,0,0,0,0,…
無限列 s2 = {1,4,1,4,2,1,3,5,6,…
無限列 s3 = {1,7,3,2,1,3,5,6,…
無限列 s4 = {2,0,0,0,0,0,0,0,…
だとしたら、多分、決定番号Nは、
s1とs4は、決定番号N = 1 ぽぃし、
s2とs3は、決定番号N = ∞ ぽぃ
∴決定番号のモピロン期待値は、∞
∴決定番号が有限になる確率は、2/4
√2の小数点決定桁目の値は、ナゾだが
√2の小数点決定桁目以降は、ZERO
だと思う。決定番号なんか面白い
by 👾

692:132人目の素数さん
21/05/30 08:20:20.41 4LOzs/AI.net
チョソンが理解すべき唯一のこと
「0から始まりωにいたる<列の中に、
 ωより小さい全ての自然数nが
 あらわれるようにはできない」
なぜならωは後続順序数でないから
n<ω ならば n<m<ωとなるmが存在するから

693:132人目の素数さん
21/05/30 08:23:59.12 4LOzs/AI.net
>>633
>無限列 s2 = {1,4,1,4,2,1,3,5,6,…
>無限列 s3 = {1,7,3,2,1,3,5,6,…
>s2とs3は、決定番号N = ∞ ぽぃ
無限列s={0,0,0,0,0,0,0,0,0,…
との比較なら、そもそも、s2もs3も、sと同値じゃなーいw

694:現代数学の系譜 雑談
21/05/30 08:31:43.26 kTzpB/An.net
>>622-623
(引用開始)
URLリンク(www.jstage.jst.go.jp)
証明論について
新井敏康(神戸大学自然科学研究科)
2002年9月27日
Hilbertの考え方はこうである。数学の対象には2種類ある:
realなものとidealなものと。realなものの代表は自然数であり、idealなものの典型は抽
象的・超限的な集合、自然数全体の集合ωのpowersetIP(ω)(=continuum)のpower
setP(P(ω))(realvaluedfunctions),etc.である。
Hilbertの眼前には、一方で集合論の逆理があり、他方にその集合論を用いた超限
的で神学的とも評された新しいスタイルの証明があった。後者はL.Kronecker「自
然数は神の御業だが、それ以外の数は人間がつくった」,L.Browerらにより強烈に
批判されていた。そこで、Hilbertは超限的な数学の無制限の使用に制約を加えなが
らそれを擁護しなければならなかった。そのためのひとつの取り得る道筋が、対象
の二分化とidealなものの権利保証として、「idealなものは原理的には単なる「言
葉の綾(figureofspeech)」に過ぎず、realな命題はそれなしでも示し得る」ことを
示していくことにあった。
(引用終り)
ここを補足すると
Hilbertがこれを考えたのは、20世紀初頭。つまり、ちょうど100年ほど前なのだ
”対象の二分化とidealなものの権利保証として、「idealな


695:ものは原理的には単なる「言 葉の綾(figureofspeech)」に過ぎず、realな命題はそれなしでも示し得る」ことを 示していくことにあった” とあるけど、 もう時代が変わってしまったんだ つづく



696:現代数学の系譜 雑談
21/05/30 08:33:05.94 kTzpB/An.net
>>636
つづき
Hilbertの数学の公理化の仕事は、十分な成果を上げた
例えば「集合論の逆理」は、その原因が解明され、「集合論の逆理」を避ける道も見つかった
しかし、数学全体を、ユークリッド幾何原本のように公理化するという夢は、実現できないことがわかった
(∵ ゲーデルの不完全性定理(下記))
21世紀の現代物理の量子力学や超弦理論は、idealのかたまりだ
「idealなものは原理的には単なる「言葉の綾(figureofspeech)」」ではない
量子の世界は、日常の理念には収まらない
数学でも同様で、現代数学では素朴な”real”を超えて、idealのかたまりになってしまった(おやじギャグ(^^ )
時枝記事なども、その典型でしょう。で、”ideal”だと、毛が三本足りないサルが飛びついて、実は腐った”ideal”だと気付かずに、喜んでいるという構図です(^^;
(参考)
URLリンク(ja.wikipedia.org)
ゲーデルの不完全性定理
不完全性定理とは、数学基礎論の重要な定理[1](数学基礎論は数理論理学や超数学とほぼ同義な分野で、計算機科学と密接に関連している[2])。クルト・ゲーデルが1931年の論文で証明した定理であり[3]、有限の立場(形式主義)では自然数論の無矛盾性の証明が成立しないことを示す[2][3]。なお、少し拡張された有限の立場では不完全性定理は成立せず、自然数論の無矛盾性の証明が成立する(ゲンツェンの無矛盾性証明)[2]。
数学の「無矛盾性」を証明することを目指したヒルベルト・プログラムに関して「不完全性定理がヒルベルトのプログラムを破壊した」という類の哲学的発言はよくあるが、これは実際の不完全性定理やゲーデルの見解とは異なる、とフランセーン達は解説している[7]。正確には、ゲーデルはヒルベルトと同様の見解を持っており、彼が不完全性定理を証明して示したのは、ヒルベルトの目的(「無矛盾性証明」)を実現するためには手段(ヒルベルト・プログラム)を拡張する必要がある、ということだった[7]。日本数学会が言うには「彼〔ゲーデル〕の結果はヒルベルトの企図を直接否定するものではなく,実際この定理の発見後に無矛盾性証明のための様々な方法論が開発されている」[3]。
(引用終り)
以上

697:132人目の素数さん
21/05/30 08:40:37.01 IHHkwfUH.net
>>632
>相手間違うなよ
間違ってないぞ?
>🐎🦌っていわれなくないだろ?
言ってもいいよ?根拠付きなら

698:132人目の素数さん
21/05/30 08:43:16.86 IHHkwfUH.net
>>632
>🐎🦌っていわれなくないだろ?
馬鹿は、上昇列と下降列の話をしてるのに、勝手に無限列と有限列の話と勘違いしたおまえな?

699:132人目の素数さん
21/05/30 08:48:50.61 IHHkwfUH.net
>>632
素直に読み間違えましたって言やいいものを何つっかかってんだ?
その前にもういっぺん自分のレス読み返してみろや

700:現代数学の系譜 雑談
21/05/30 09:49:10.79 kTzpB/An.net
>>633
(引用開始)
無限列 s1 = {1,0,0,0,0,0,0,0,0,…
無限列 s2 = {1,4,1,4,2,1,3,5,6,…
無限列 s3 = {1,7,3,2,1,3,5,6,…
無限列 s4 = {2,0,0,0,0,0,0,0,…
だとしたら、多分、決定番号Nは、
s1とs4は、決定番号N = 1 ぽぃし、
s2とs3は、決定番号N = ∞ ぽぃ
∴決定番号のモピロン期待値は、∞
∴決定番号が有限になる確率は、2/4
√2の小数点決定桁目の値は、ナゾだが
(引用終り)
モピロンさん、どうも
スレ主です
それ面白い
私なりに解釈すると
(なお、細かい点は>>401 時枝記事ご参照)
1.無限列を、区間(0,10)のある実数rから無限列を構成する
 つまり、無限小数のn桁目の数を、n番目の数とする
 但し、有限小数の場合は、後ろに0を付ける
 一例が
 √2→無限列 s2 = {1,4,1,4,2,1,3,5,6,…
2.代表は、有限小数の場合は、有限小数そのものとする
 この場合、決定番号は、有限小数の桁数nと一致する
3.無限小数の場合は、確たる基準が決められないので、時枝記事のしっぽの同値類から無作為に選んだ数列を代表とする
 この場合、決定番号の期待値は、有限の桁数nにはならない(∞)でしょう
 (”期待値”という概念を入れたことが面白い)
なかなか良い閃きですね。うんうん(^^

701:132人目の素数さん
21/05/30 10:04:14.63 4LOzs/AI.net
>>638
>間違ってないぞ?
疑問符がつい


702:てるのはキミ自身、自信がない証拠 当然だろう、間違ってるんだからw >言ってもいいよ?根拠付きなら では、以下で根拠を示そう >>639 >馬鹿(=チョソン)は、上昇列と下降列の話をしてるのに、 >勝手に無限列と有限列の話と勘違いしたおまえな? 🐎🦌が提示した列がそもそも上昇列でも下降列でもないのでその点を指摘した キミはわかってなかったんだね そりゃチョソンと同類の🐎🦌だわ これ根拠、キミもチョソンと一緒にピョンヤンに帰れwww



703:132人目の素数さん
21/05/30 10:06:56.11 4LOzs/AI.net
>>640
素直に
「すまん、オレもチョソン同様、上昇列&下降列わかってねぇわ
 童貞だと思って最初っから優しくおしえて、お姉タマ」
といえばいいものをwwwwwww
どうしてオオサカにはチョソン人やハングク人しかおらんのやろな?www

704:132人目の素数さん
21/05/30 10:24:16.48 4LOzs/AI.net
>>641
>それ面白い
チョソンは自分が理解できないとき
この言葉で自分にウソをつく
だから🐎🦌のまんまなんだよwww

705:132人目の素数さん
21/05/30 10:26:12.28 4LOzs/AI.net
>>641
>私なりに解釈すると
日本語も読めないチョソンの
独善解釈が正しかった試しは
一度としてなかったが
いいかげん自分が🐎🦌だと気づけ 
どこの大学も受からんかった負け🐕チョソン!

706:現代数学の系譜 雑談
21/05/30 10:29:52.95 kTzpB/An.net
>>641
> この場合、決定番号の期待値は、有限の桁数nにはならない(∞)でしょう
> (”期待値”という概念を入れたことが面白い)
>なかなか良い閃きですね。うんうん(^^
”期待値”について
下記ご参照
URLリンク(ai-trend.jp)
AVILEN Inc.
2020/04/14
期待値の定義・性質・計算例。平均との違いも!
統計学の基礎
ライター:IMIN
目次
1 期待値の定義
1.1 離散型の場合
1.2 連続型の場合
2 期待値の性質
2.1 期待値の線型性
2.2 期待値の単調性
2.3 X2の期待値
2.4 独立な2つの確率変数に対して
3 期待値と平均の違い
4 関数の期待値
4.1 離散型確率変数の関数の期待値
4.2 連続型確率変数の関数の期待値
期待値と平均の違い
期待値は記号では、μ(ミュー)と表され、これは英語の平均meanの頭文字mに対応するギリシャ文字であり、このことからも期待値と平均には深い関連があることが見て取れます。
大数の法則から、標本サイズNが∞まで大きくなるとき、pi=Ni/Nとなります。つまり、標本の数が∞のとき、μ=x ̄が成り立ちます。また、標本の数が∞というのは、標本が母集団に一致していることを示しています。よって標本が母集団と一致するとき、期待値と標本平均が等しくなる、ということです。
このことから、期待値というのは標本の背後に存在する母集団の平均に対応する値であり、標本の理論的な平均値(母集団の平均値)を表すものだと理解出来ます。また、理論的な平均値というのは母集団における平均であり、確率分布の期待値は母集団の平均値と一致します。
(引用終り)
以上

707:132人目の素数さん
21/05/30 10:30:10.52 4LOzs/AI.net
>>641
>無限小数の場合は、確たる基準が決められないので、
>時枝記事のしっぽの同値類から無作為に選んだ数列を代表とする
>この場合、決定番号の期待値は、有限の桁数nにはならない(∞)でしょう
期待値が発散するのと、決定番号が確率1で∞となるのとは全く異なるがw
そんな初歩的なことも分からずに
「確率論で時枝記事は完全否定できる!」
とか口からデマカセのホラふいとったんか?
大阪生まれのチョソン人SET Aはwww

708:132人目の素数さん
21/05/30 10:32:40.84 4LOzs/AI.net
>>641
>”期待値”という概念を入れたことが面白い
>なかなか良い閃きですね。うんうん
いつもながら🐎🦌な言い訳だ
キサマは会社で30年以上そんな言い訳しかしてこなかったんか?
さすが能無しチョソンwww さっさとピョンヤンに帰れwwwwwww

709:132人目の素数さん
21/05/30 10:36:57.16 J8YsAX2B.net
平面ユークリッド幾何の体系の中で、決定不能な命題があるか、あるとすれば
どのようなものか、例を上げよ。(5点)。

710:132人目の素数さん
21/05/30 10:39:33.96 4LOzs/AI.net
>>641
決定番号の平均が発散したからといって
決定番号が∞となることはない
な�


711:コなら、もし決定番号が自然数の値をとらないなら それは「当該数列が、同値類の代表数列と同値でない」 という同値類の定義に真っ向から反する矛盾を導くからw いいかげん自分の初歩的誤りに気づけ チョソン! 🐎🦌のまま死にたいのか?wwwwwww



712:現代数学の系譜 雑談
21/05/30 11:01:59.20 kTzpB/An.net
>>602 補足
(引用開始)
可算無限長の上昇列 1<2<3<・・<ω があったとして、
これが、降下列に変わったりしません
あくまで、上昇列は上昇列
そして列の長さは、あくまで可算無限長であって、決して有限長などにはなりませんw(^^;
(引用終り)
この無限降下列の議論は、下記の整礎関係の記事や、正則性公理の話に起源があります
多分、下記のような日本語「二項関係が整礎(せいそ、英: well-founded)であるとは、真の無限降下列をもたないことである」が、ミスリードです
私も、最初引っかかりましたが、すぐ誤りに気付きました(まあ、サルには難しいよね)
ここ、英語版では、”Equivalently, assuming the axiom of dependent choice, a relation is well-founded if it contains no countable infinite descending chains: that is, there is no infinite sequence x0, x1, x2, ... of elements of X such that xn+1 R xn for every natural number n.[1][2]”
となっていて、”such that xn+1 R xn for every natural number n”とあり、自然数nに大して、”xn+1 R xn”なる ”no countable infinite descending chains”なのです
日本語だけで考えると、ハマリですね(^^;
(参考)
URLリンク(ja.wikipedia.org)
整礎関係
二項関係が整礎(せいそ、英: well-founded)であるとは、真の無限降下列をもたないことである。
定義
集合あるいはクラス X 上の二項関係 R が整礎であるとは、X の空でない任意の部分集合 S が R に関する極小元を持つことをいう[1]。
X が集合であるとき、従属選択公理(英語版)(これは選択公理よりも真に弱く可算選択公理よりも真に強い)を仮定すれば、同値な定義として、関係が整礎であることを可算無限降下列が存在しないこととして定められる[3]。つまり、X の元の無限列 x0, x1, x2, ... で、どんな n についても xn+1 R xn となるようなものはとれない。
つづく

713:現代数学の系譜 雑談
21/05/30 11:02:30.42 kTzpB/An.net
>>651
つづき
URLリンク(en.wikipedia.org)
Well-founded relation
In mathematics, a binary relation R is called well-founded (or wellfounded) on a class X if every non-empty subset S ⊆ X has a minimal element with respect to R, that is, an element m not related by sRm (for instance, "s is not smaller than m") for any s ∈ S.
Equivalently, assuming the axiom of dependent choice, a relation is well-founded if it contains no countable infinite descending chains: that is, there is no infinite sequence x0, x1, x2, ... of elements of X such that xn+1 R xn for every natural number n.[1][2]
(引用終り)
以上

714:現代数学の系譜 雑談
21/05/30 11:10:52.33 kTzpB/An.net
>>649
>平面ユークリッド幾何の体系の中で、決定不能な命題があるか、あるとすれば
>どのようなものか、例を上げよ。(5点)。
面白いね
第五公準が有名ですね(下記)(^^
URLリンク(ja.wikipedia.org)
平行線公準
平行線公準とは、ユークリッド幾何学における特色のある公準である。平行線公理、ユークリッド原論における5番目の公準であったことから、ユークリッド(エウクレイデス)の第5公準(公理)とも呼ばれる。これは2次元幾何学において次のようなことを述べている。
1つの線分が2つの直線に交わり、同じ側の内角の和が2直角より小さいならば、この2つの直線は限りなく延長されると、2直角より小さい角のある側において交わる。
ユークリッド幾何学は平行線公準を含む全てのユークリッドの公準を満たすような幾何学を研究するものである。平行線公準が成立しない幾何学は非ユークリッド幾何学と呼ばれる。平行線公準から独立した幾何学(つまり、ユークリッド公準のうち、最初の4つの公準しか仮定しない幾何学)を絶対幾何学(英語版)(もしくは中立幾何学)と呼ぶ。
URLリンク(upload.wiki)


715:media.org/wikipedia/commons/thumb/e/ed/Parallel_postulate_en.svg/350px-Parallel_postulate_en.svg.png 内角αとβの角度の和が180°未満であれば、二つの直線は無限に伸ばせば同じ側で交わる。 歴史 2000年もの間、平行線公準をユークリッドの他の4公準から証明するという試みが多数行われてきた。この証明が特に求められたのは、平行線公準が他の4公準とは違い、自明ではなかったことが大きな理由である。 ユークリッドは平行線公準なしで証明もしくは論証を先に進められないと気づいた時にのみ、これを使っていたことを意味している[7]。4公準から第5公準を証明する試みが多く行われ、間違いが発見されるまでそれが正しい証明であると受け入れられてきた。 証明において間違いを犯してしまった理由は、常に第5公準と同値の命題(プレイフェアの公理)を「明らかに」正しいものと仮定していたことに起因している。1795年、ジョン・プレイフェアがユークリッドに関する有名な解説書を著し、その中でユークリッドの第5公準を自身の公理と置き換えるよう提案した (引用終り) 以上



716:132人目の素数さん
21/05/30 11:27:26.65 4LOzs/AI.net
>>653
🐎🦌
第五公準はユークリッド幾何では真だが
公理なんだからあたりまえだろwww
ユークリッド幾何から第五公準を除いた
「前ユークリッド幾何」ともよぶべきものについて
第五公準が決定不能
味噌とクソの区別もつかん🐎🦌チョソンはピョンヤンに帰れwww

717:132人目の素数さん
21/05/30 11:30:12.00 4LOzs/AI.net
>>651
>多分、下記のような日本語
>「二項関係が整礎(せいそ、英: well-founded)であるとは、
> 真の無限降下列をもたないことである」
>が、ミスリードです
🐎🦌wwwwwww
「真の」は別に要らないが、
「無限降下列を持たない」は否定できないぞ
間違いを認められないと●違いになるぞ チョソン!

718:現代数学の系譜 雑談
21/05/30 11:34:30.77 kTzpB/An.net
>>651 補足
>多分、下記のような日本語「二項関係が整礎(せいそ、英: well-founded)であるとは、真の無限降下列をもたないことである」が、ミスリードです
>私も、最初引っかかりましたが、すぐ誤りに気付きました(まあ、サルには難しいよね)
>日本語だけで考えると、ハマリですね(^^;
下記の整礎的集合(正則性公理)を考えると分かり易い
(どういうわけか、英語版がない。独語版を代用しました)
「整礎的集合(せいそてきしゅうごう、well-founded set)とは、空集合に和集合演算やべき集合演算などの集合演算を繰り返し施すことにより得られる集合である」
そこで、集合を並べるのに、記号”∈”が使える。二項関係Rとして、”∈”を使う
A∈B (一番単純な集合が空集合Φで、だんだん複雑な集合ができる。”A∈B”は、左のAより、右のBが複雑な集合だってことを意味するとも解せられる)
下記のノイマン構成の自然数もそう。数nが大きくなると、それを表現する集合も複雑になる
この”∈”による整礎関係は、日常語の複雑さと解せられる
で、段々複雑になる”∈”列が、上昇列です。これは無限に複雑にできる
一方、だんだん簡単にする”∈”列も考えられるが、これは必ず止まる。少なくとも、空集合Φに来れば止まる
「空集合Φより簡単な集合はない」を公理にしたのが、正則性公理です
(参考)
URLリンク(ja.wikipedia.org)
整礎的集合
整礎的集合(せいそてきしゅうごう、well-founded set)とは、空集合に和集合演算やべき集合演算などの集合演算を繰り返し施すことにより得られる集合である。
集合の階数
整礎的集合 x に対して、x ∈ Vα + 1 をみたす最小の順序数 α を x の階数(rank)といい、これを rank(x) で表す。
rank(x) = sup {rank(y)+1 | y ∈ x} が成立する。
正則性公理と整礎的集合
正則性公理を用いると、すべての集合が整礎的であることが示される。したがって、すべての集合に階数が定義される。
つづく

719:現代数学の系譜 雑談
21/05/30 11:35:01.46 kTzpB/An.net
>>656
つづき
(英語版がないようなので、独語版を)
URLリンク(de.wikipedia.org)
Fundierte Menge
Inhaltsverzeichnis
1 Noethersche Induktion
2 Beispiele
3 Lange absteigender Ketten
(ノイマンによる自然数系の構成)
URLリンク(www.slideshare.net)
何もないところから数を作る
7/24「第4回プログラマのための数学勉強会」にて発表。
Taketo Sano
38. フォン・ノイマンによる自然数系の構成 として順に作っていく。 1. 0 = {} (空集合) 2. a+ = a∪{a}
(引用終り)
以上

720:132人目の素数さん
21/05/30 11:55:51.73 4LOzs/AI.net
>>656
>段々複雑になる”∈”列が、上昇列です。これは無限に複雑にできる
なんか誤解してるなw
順序数が複雑になるからといって、上昇列が複雑になるわけではない
(上昇/下降)列を誤解するからそういう🐎🦌なことを書くw

721:現代数学の系譜 雑談
21/05/30 13:37:15.40 kTzpB/An.net
>>656
>>多分、下記のような日本語「二項関係が整礎(せいそ、英: well-founded)であるとは、真の無限降下列をもたないことである」が、ミスリードです
>「空集合Φより簡単な集合はない」を公理にしたのが、正則性公理です
1.下記 wikipedia 正則性公理の説明にも、「∀xについて、無限下降列である x∋x1∋x2∋... は存在しない」が出てきますが
 繰り返しますが、ダメなのは、「”xn+1 R xn”なる ”countable infinite descending chains”」(>>651)なのです
 逆の「x∈x1∈x2∈... 」なる無限列はOKです。勘違いしているサル二匹がいます
2.あと、正則性公理でノイマンが狙ったのは、下記の”Epsilon-induction”です
 つまり、帰納法を走らせるためです
3.そのために、 正則性公理の役割は、
 空集合Φからできる集合を規制すると同時に、
 ∈による順序記号として、∈の意味として等号を含めないといのがあります
 不等号で書くと、”≦”ではなく、”<”の意味に制限するってことです
 こうすると、x <xとは書けないのです。つまり、「x ∈x はダメ」ということになるのです!(^^
(参考)
URLリンク(ja.wikipedia.org)
正則性公理
定義
空でない集合は必ず自分自身と交わらない要素を持つ。 ∀A(A≠ Φ → ∃x∈ A ∀t∈A(t not∈ x))
以下の4つの主張はいずれも同値であり、どれを正則性の公理として採用しても差し支えない。
x・任意の空でない集合xに対して、 ∃y∈x,x∩y=0
・∀xについて、∈がx上well-founded
・∀xについて、無限下降列である x∋x1∋x2∋... は存在しない。
・ V=WF}V=WF
ここで、Vはフォン・ノイマン宇宙を指し、WFは0に冪集合の演算を有限回、あるいは超限回繰り返して得られる集合全体のクラスを指す。
ZF公理系の他の公理系から得られる種々の集合演算(対集合、和集合、冪集合) の結果としての集合は常にWF内に含まれるため、V=WFの仮定は全ての集合を0に通常の集合演算を施すことによって得られるものだけに制限することを主張している。
したがって、例えばx={x}のような集合やx∈yかつy∈xなる集合は正則性の公理の下では集合にはなり得ない。
つづく

722:現代数学の系譜 雑談
21/05/30 13:38:03.22 kTzpB/An.net
>>659
つづき
URLリンク(en.wikipedia.org)
Epsilon-induction
In mathematics, ∈-induction (epsilon-induction or set-induction) is a variant of transfinite induction.
Considered as an alternative set theory axiom schema, it is called the Axiom (schema) of (set) induction.
It can be used in set theory to prove that all sets satisfy a given property P(x). This is a special case of well-founded induction.
Contents
1 Statement
1.1 Comparison with natural number induction
2 Independence
ndependence
In the context of the constructive set theory CZF, adopting the Axiom of regularity would imply the law of excluded middle and also set-induction. But then the resulting theory would be standard ZF. However, conversely, the set-induction implie


723:s neither of the two. In other words, with a constructive logic framework, set-induction as stated above is strictly weaker than regularity. (引用終り) 以上



724:現代数学の系譜 雑談
21/05/30 14:34:59.33 kTzpB/An.net
>>659 補足
>繰り返しますが、ダメなのは、「”xn+1 R xn”なる ”countable infinite descending chains”」(>>651)なのです
>逆の「x∈x1∈x2∈... 」なる無限列はOKです。
ここの説明としては、下記の段級位制に例えるのが分かり易い(サル二匹には無理としても)
1.段級位制で、級は数字が増えるほど、ランクは下がります。つまり下降列です*)
2.一方、段位は、数字が増えるほど、ランクは上がります。つまり上昇列です
3.整楚や正則性公理で規制しているのは、無限の降下列です。∞級はダメです。∞段はOKです(^^;
注*)
・一等賞、二等賞なども、下降列です。数字が増えるほど、ランクが下がります
・徒競走の1番、2番・・も同様です。数字が増えるほど、ランクが下がります
・なお、チェスのレーティングは、数字が上ほど、ランクが上です
(参考)
URLリンク(ja.wikipedia.org)
段級位制
段級位制(だんきゅういせい)は、テーブルゲーム・武道・スポーツ・書道・珠算などで技量の度合いを表すための等級制度のうち、段位を上位とし、級位を下位に置くものをいう。級位は数字の多い方から少ない方(10級 → 1級)へ昇級するのに対して、段位は数字の少ない方から多い方(初段 → 十段)へ昇段していく仕組みになっている。
段位・級位
段位及び級位はそれぞれ武道や芸道、スポーツ、遊戯において現在の技能、過去の実績などの段階を示すものである。一般的には段位は級位の上位にあり、初級者は級位から取得し、段位の認定を目指すことになる。段位は、初段(「一段」という表記は慣例的に用いない)にはじまり、十段を最高位とする10段階で構成されていることが多い(例外もある)。級位は1級を上限とし、初段の1つ下が1級、1級の1つ下が2級であり、級位の下限はカテゴリーによって異なる。
まず江戸時代の名人碁所、本因坊道策が囲碁において導入し、それが将棋でも採用され、明治時代になって、武道や芸道などに広がっていった。
つづく

725:現代数学の系譜 雑談
21/05/30 14:35:21.89 kTzpB/An.net
>>661
つづき
URLリンク(ja.wikipedia.org)
FIDE世界ランキングとは、国際チェス連盟 (FIDE)が毎月発表しているチェスのレーティングの世界ランキングである。
概要
国際チェス連盟は、レーティングを用いてチェスプレイヤーの強さを数値化している。
詳細は「イロレーティング」を参照
最初の世界ランキングが発表されたのは1971年7月であり当時は年1回の発表であったが、現在では月に1度の頻度で発表されている。
(引用終り)
以上

726:132人目の素数さん
21/05/30 15:29:24.95 IHHkwfUH.net
>>642
>🐎🦌が提示した列がそもそも上昇列でも下降列でもないのでその点を指摘した
それって
>1∈2∈3∈・・∈ω
のことだろ?
これ∈列だよ? 1から見れば∈上昇列、ωから見れば∈下降列
え??? そんなことも分からんの? おまえも落ちこぼれか?
言っとくが、∈無限列であるなんて一言も言ってないので勝手に誤解せぬよう

727:132人目の素数さん
21/05/30 15:31:32.51 IHHkwfUH.net
ID:4LOzs/AI
はアホザルと同類の落ちこぼれでした
やれやれ

728:現代数学の系譜 雑談
21/05/30 17:07:29.81 kTzpB/An.net
>>661
(引用開始)
ここの説明としては、下記の段級位制に例えるのが分かり易い(サル二匹には無理としても)
1.段級位制で、級は数字が増えるほど、ランクは下がります。つまり下降列です*)
(引用終り)
追加説明
1.多項式で、下記降べきの順と昇べきの順というのがある
 f(x)=a0+a1x+a2x^2 が昇べきの順
 f(x)=a2x^2+a1x+a0 が降べきの順
2.多項式ならば、(項が有限なので)どちらもありうるが、形式的冪級数(無限のべき項を持つ式)では、昇べきの順しかありえない
 変数xのべき(冪)�


729:ェ増える順に、係数a0,a1,a3・・と並ぶ(下記 形式的冪級数の”より形式的な定義”をご参照 )  この係数列 a0,a1,a3・・は、上昇列です サルには理解が難しいかな (参考) https://manabitimes.jp/math/827 高校数学の美しい物語 降べきの順と昇べきの順について 更新日時 2021/03/07 降べきの順とは,次数が下がって行くような式の表し方。 降べきの順で表した例 . x^3-x^2+4x+1 昇べきの順とは,次数が上がって行くような式の表し方。 昇べきの順で表した例 . 1+4x-x^2+x^3 この記事では, 降べきの順と昇べきの順の意味 や, どちらを使うべきなのか などについて解説します。 目次 ・降べきの順とは ・昇べきの順とは ・変数が複数ある場合 ・降べきの順 VS 昇べきの順 ・そもそもなぜ式を整理するのか 降べきの順 VS 昇べきの順 降べきの順と昇べきの順のどちらで表すのが良いのかを考えてみます。 基本方針は 「重要なものを先頭に持ってくる」です。次数の高いものが重要なのか,定数項が重要なのか,場面に応じて使い分けます。 ・基本的には降べきの順に整理すればよいです。多くの場面では高次の項が重要だからです。 ・まれに昇べきの順に整理する場面(定数項が重要な場合)が出てきます。例えば,マクローリン展開など,いろいろな関数を多項式で近似する場合は定数項が重要なのです。 ・実は,対称式の場合は降べきの順でも昇べきの順でもない整理の仕方が一番美しい場合があります。 つづく



730:現代数学の系譜 雑談
21/05/30 17:08:15.59 kTzpB/An.net
>>665
つづき
そもそもなぜ式を整理するのか
「降べきの順や昇べきの順にする」というのは「式の整理」の方法の1つです。一般に,式を整理すると,
・単純に見やすい,そのため次なる一手につなげやすい
・因数分解しやすくなる
などの恩恵があります。どのように整理すると最大限恩恵が得られるのかを考えて,場面に応じて整理の方法を使い分けましょう。
URLリンク(ja.wikipedia.org)
多項式環
定義
体 K に係数を持つ不定元 X に関する多項式とは
p=pmX^m+p_m-1X^m-1+・・・+p1X+p0
の形の式のことである。ここで p0, …, pm は K の元で、p の係数といい、X, X2, … は形式的な記号だが X の冪という。
注意すべき点として、多項式には項が有限個しかないこと ?つまり十分大きな k(ここでは k > m)に関する係数 pk がすべて零であるということ? は、暗黙の了解である。多項式の次数とは X k の係数が零でないような最大の k のことである。特別な場合として、零多項式(係数が全て零)の次数は定義しないか、あるいは負の無限大 ?∞ と定義する。
URLリンク(ja.wikipedia.org)
形式的冪級数
形式的冪級数(英: formal power series)とは、(形式的)多項式の一般化であり、多項式が有限個の項しか持たないのに対し、形式的冪級数は項が有限個でなくてもよい。
定義
A を可換とは限らない環とする。A に係数をもち X を変数(不定元)とする(一変数)形式的冪級数 (formal power series) とは、各 ai (i = 0, 1, 2, …) を A の元として、
Σ _n=0~∞a nX^n=a0+a1X+a2X^2+・・
の形をしたものである。ある m が存在して n ≧ m のとき an = 0 となるようなものは多項式と見なすことができる。
より形式的な定義
N を非負整数全体の集合とし、配置集合 AN すなわち N から A への関数(A に値を持つ数列)全体を考える。この集合に対し
(an)n∈N+(bn)n∈N:=(an+bn)n∈N
(an)n∈N・(bn)n∈N:=(Σk=0~n akbn-k)n∈N
によって演算を定めると、AN は環になることが確かめられる。これが形式的冪級数環 A[[X]] である。
ここでの (an) は上の 蚤nX^n と対応する。
(引用終り)
以上

731:132人目の素数さん
21/05/30 17:22:49.43 4LOzs/AI.net
>>663


732: >>🐎🦌が提示した列がそもそも上昇列でも下降列でもない >それって >>1∈2∈3∈・・∈ω >のことだろ? そうだよ >これ∈列だよ? 🐎🦌チョソンが書いた列なら、違う もし 1∈2∈3∈・・∈n∈ω と書いてあったなら 確かに∈列である し・か・し、🐎🦌チョソンは 1∈2∈3∈・・∈ω と書いて、これが無限列だといっている そして、その説明を読む限り 「ωの左側に全ての自然数が現れる列」 だと考えていることがわかる その時点で、∈列たりえない だいたい、「∈ω」のすぐ左の項は何だ?という質問に対して 🐎🦌チョソンが、ガースー💩首相のごとく、 頑なに答えずにはぐらかすのを見る限り 「すぐ左の項なんかない しかしなくても∈列だ!」 と初歩的誤解してるのが分かる ID:IHHkwfUH も🐎🦌チョソンと同じ誤解をしてるのか? ならいっしょにピョンヤンに帰れwwwwwww



733:132人目の素数さん
21/05/30 17:26:38.99 4LOzs/AI.net
>>659
>「x∈x1∈x2∈... 」なる無限列はOKです。
なぜOKかわかるか?w
それは上記の列の任意のxnは、xから有限ステップで到達するから
つまりどの項からもxに有限回で降下できるから
いい加減気づけよ🐎🦌チョソンwww

734:132人目の素数さん
21/05/30 17:33:40.94 4LOzs/AI.net
>>661
なんか相変わらずトンチンカンなこと書いてるなガースーチョソンはw
アベもクソだがガースーはさらにクソだった
さて、本題に入ろう
ω段はOK? 別に構わんよ
で、ω段から降格して0段に至る列は、有限長ってわかるか?
一発目でω段から降格する場合、どの段に落ちる?
どの段に落ちるとしてもn段(nは自然数)だろ?
その瞬間、有限長だとわかるな
もちろん、長さの上限はない nの上限はないからな
しかしどこかのnに降りるしかないんだから無限長にはなり得ないな
いいかげんこんな大学1年の4月で習うようなこと理解しろよ
おまえは万年18歳の数学ドーテー野郎なんか?wwwwwww

735:132人目の素数さん
21/05/30 17:35:13.95 4LOzs/AI.net
>>665-666
これ無関係だから全部ゴミ箱なwwwwwww

736:132人目の素数さん
21/05/30 20:02:55.14 IHHkwfUH.net
>>667
>もし
>1∈2∈3∈・・∈n∈ω
>と書いてあったなら
>確かに∈列である
1,2,…,9,10
と書いてあったら列。
1,2,…,10
と書いてあっても列。
後者は,9を省略しているに過ぎず同じ列。
1∈2∈3∈・・∈n∈ω
と書いてあったら列。
1∈2∈3∈・・∈ω
と書いてあっても列。
後者は∈nを省略しているに過ぎず同じ列。

737:132人目の素数さん
21/05/30 22:22:54.10 4LOzs/AI.net
>>671
チョソンがいったことも読み取れない
キミのあだ名はマンジュねw
チョソンが無限列だといっている
マンジュに否定できるか?w
チョソンは
「ωの左側に全ての自然数が現れる列」
だと考えている
マンジュに否定できるか?w

738:現代数学の系譜 雑談
21/05/31 08:18:25.72 bBlCoden.net
>>558
Steve Awodey 先生
URLリンク(www.sciencedirect.com)
Annals of Pure and Applied Logic
Volume 165, Issue 2, February 2014, Pages 428-502
Steve Awodey Carsten Butzb1 Alex Simpsonc2 Thomas Streicherd
Abstract
This paper introduces Basic Intuitionistic Set Theory BIST, and investigates it as a first-order set theory extending the internal logic of elementary toposes. Given an elementary topos, together with the extra structure of a directed structural system of inclusions (dssi) on the topos, a forcing-style interpretation of the language of first-order set theory in the topos is given, which conservatively extends the internal logic of the topos. This forcing interpretation applies to an arbitrary elementary topos, since any such is equivalent to one carrying a dssi. We prove that the set theory (where Coll is the strong Collection axiom) is sound and complete relative to forcing interpretations in toposes with natural numbers object (nno). Furthermore, in the case that the structural system of inclusions is superdirected, the full Separation schema is modelled. We show that all cocomplete and realizability toposes can (up to equivalence) be endowed with such superdirected systems of inclusions.
A large part of the paper is devoted to an alternative notion of category-theoretic model for BIST, which, following the general approach of Joyal and Moerdijk?s Algebraic Set Theory, axiomatizes the structure possessed by categories of classes compatible with BIST. We prove soundness and completeness results for BIST relative to the class-category semantics. Furthermore, is complete relative to the restricted collection of categories of classes given by categories of ideals over elementary toposes with nno and dssi. It is via this result that the completeness of the original forcing interpretation is obtained, since the internal logic of categories of ideals coincides with the forcing interpretation.

739:現代数学の系譜 雑談
21/05/31 08:26:40.96 bBlCoden.net
これ面白い
圏論は外だな
Second order arithmetic (These are defined in detail in the articles on second order arithmetic and reverse mathematics.)
は、入っている
URLリンク(en.wikipedia.org)
List of first-order theories
In mathematical logic, a first-order theory is given by a set of axioms in some language. This entry lists some of the more common examples used in model theory and some of their properties.
Contents
1 Preliminaries
2 Pure identity theories
3 Unary relations
4 Equivalence relations
5 Orders
6 Lattices
7 Graphs
8 Boolean algebras
9 Groups
10 Rings and fields
11 Geometry
12 Differential algebra
13 Addition
14 Arithmetic
15 Second order arithmetic
16 Set theories
17 See also
18 References
19 Further reading
Preliminaries
For every natural mathematical structure there is a signature σ listing the constants, functions, and relations of the theory together with their arities, so that the object is naturally a σ-structure. Given a signature σ there is a unique first-order language Lσ that can be used to capture the first-order expressible facts about the σ-structure.
There are two common ways to specify theories:
1.List or describe a set of sentences in the language Lσ, called the axioms of the theory.
2.Give a set of σ-structures, and define a theory to be the set of sentences in Lσ holding in all these models. For example, the "theory of finite fields" consists of all sentences in the language of fields that are true in all finite fields.
An Lσ theory may:

(引用終り)
以上

740:132人目の素数さん
21/05/31 08:51:15.68 50J4z65h.net
>>673-674
チョソン、今日も発●中
一階論理(FOL)もわからん🐎🦌に、二階論理(SOL)なんて無理
無能なクセにマウントしたがるサルはピョンヤンに帰れwww

741:132人目の素数さん
21/05/31 11:58:51.02 pdrViWtM.net
>>672
数学科出身をかたるサルが、だめなんじゃないの?
>>671より)
1,2,…,9,10
と書いてあったら列。
1,2,…,10
と書いてあっても列。
後者は,9を省略しているに過ぎず同じ列。
1∈2∈3∈・・∈n∈ω
と書いてあったら列。
1∈2∈3∈・・∈ω
と書いてあっても列。
後者は∈nを省略しているに過ぎず同じ列。
(引用終り)
これ正しいんじゃね?
お主、レベルが高くないのに、威張りすぎだよ
数学科出身を鼻にかけてさ
そのレベルで、必死に他人にマウントしたがる


742:よね ブザマで、滑稽だよ



743:132人目の素数さん
21/05/31 14:02:46.21 bKoS+/J9.net
>>676
彼が言いたいのは、ω以下の順序数すべて(0を除く)を並べた 1∈2∈3∈・・∈ω
はそもそも∈列じゃないってことでしょ?
それは正しいよ。ωのすぐ左が定まらないから。
つまり間違ってるのはキミだけだよ、サルくん。

744:現代数学の系譜 雑談
21/05/31 14:40:09.58 pdrViWtM.net
1. 自然数の集合Nで、これは下記ノイマン構成によれば順序数ωでもあり、N=ω
2.いま、任意のn∈Nに対し、n∈ω(∵ N=ω )
3.記号で書けば、∀n∈ω
4.つまりは、N={0,1,2,・・}とも書けるので
 0∈1∈2∈・・∈ω !
 ここに、”0∈1∈2∈・・”は、全ての自然数を尽くす!!(∵∀n∈N→∀n∈ω)
 (”1∈2”などの、途中の∈は、下記のノイマンの自然数構成法より)
ωの「すぐ左」なんて、小学校までの話だわさw
大学数学では、だれも問題にしないよ(∵ 無限集合で、「すぐ左」などと言い出せば、当てはまらない例は、日常茶飯事だよ)
(>>237より )
URLリンク(ja.wikipedia.org)
極限順序数
順序数に関するフォンノイマンの定義(英語版)を用いれば、任意の順序数はそれより小さい順序数全体の成す整列集合として与えられる。

順序数全体の成す類は整列順序付けられているから、有限でない最小の極限順序数 ω が存在する。この順序数 ω は、自然数の最小上界に一致するものとして、最小の超限順序数でもある。ゆえに、ω は自然数全体の成す集合の順序型を表している。
(参考)
URLリンク(ja.wikipedia.org)
自然数の公理
「ペアノの公理」も参照
0 を含み後者関数について閉じている集合のひとつを M とする。
自然数は「後者関数について閉じていて、0 を含む M の部分集合の共通部分」として定義される。
無限集合の公理により集合 M が存在することが分かり、このように定義された集合がペアノの公理を満たすことが示される。 このとき、それぞれの自然数は、その数より小さい自然数全てを要素とする数の集合、となる。
0 := {}
1 := suc(0) = {0} = {{}}
2 := suc(1) = {0, 1} = {0, {0}} = { {}, {{}} }
3 := suc(2) = {0, 1, 2} = {0, {0}, {0, {0}}} = { {}, {{}}, { {}, {{}} } }
等々である[3]。
URLリンク(ja.wikipedia.org)
ペアノの公理
この構成法はジョン・フォン・ノイマンによる[1] 。
(引用終り)
以上

745:132人目の素数さん
21/05/31 14:49:46.31 50J4z65h.net
>>676
>> 1∈2∈3∈・・∈n∈ω
>> 1∈2∈3∈・・∈ω
>> 後者は∈nを省略しているに過ぎず同じ列。
>これ正しいんじゃね?
じゃ、チョソンの
「1∈2∈3∈・・∈ω は可算無限列」
は、まったくのウソッパチってことだな
だって
 1∈2∈3∈・・∈ω
=1∈2∈3∈・・∈n∈ω
は、有限列じゃん 
長さn+1じゃん n+1が無限かよ? 
🐎ぁぁぁぁぁ🦌

746:132人目の素数さん
21/05/31 14:52:54.76 50J4z65h.net
>>677
>ω以下の順序数すべて(0を除く)を並べた
>1∈2∈3∈・・∈ω はそもそも∈列じゃないってことでしょ?
>それは正しいよ。ωのすぐ左が定まらないから。
そういうことよ チョソンは終始一貫して
ωの左側に全ての自然数が並ぶ、といっている
その瞬間 ∈列でなくなることが、🐎🦌には理解できない

747:132人目の素数さん
21/05/31 14:58:24.23 50J4z65h.net
>>678
>任意のn∈Nに対し、n∈ω
然り
>つまりは、N={0,1,2,・・}とも書けるので
>0∈1∈2∈・・∈ω !
>ここに、”0∈1∈2∈・・”は、全ての自然数を尽くす!!
否w
いくら力みかえって絶叫しても、否なものは否w
0∈ω
0∈1∈ω
0∈1∈2∈ω
0∈1∈2∈3∈ω
・・・
いくらでも長い列が続けられる
し・か・し、どの列も有限
ωの左側に全ての自然数が並ぶことはない
な・ぜ・な・ら、ωは極限順序数であって
ωより小さい順序数(すなわち自然数)の中に、
最大のものは存在しないから
チョソン!
貴様の負けだ!
貴様は死んだ!
今!!ここで!!!

748:132人目の素数さん
21/05/31 15:03:44.41 50J4z65h.net
∈列だというからには、∈の左右が全て決まっていなくてはならない
・・・∈ωで、∈の左側が存在しないなら、それは∈列ではない
順序数を、順序に従って並べたものが、
∈列になると「誤解」したのが
🐎🦌チョソンの失敗
チョソンは定義を一切確認しない
独善的な思いつきを絶対の真理だと妄想する
だから初歩から間違う
妄想するなw

749:現代数学の系譜 雑談
21/05/31 15:25:03.23 pdrViWtM.net
>>678 補足
>> 1∈2∈3∈・・∈n∈ω
  ↓
>> 1∈2∈3∈・・∈∀n∈ω
などと、∀を使えば、よかんべ
日常数学では
「∀n∈N」は、普通だっぺ
(参考)
URLリンク(en.wikipedia.org)
First-order logic
First-order logic?also known as predicate logic, quantificational logic, and first-order predicate calculus?is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable.[1] This distinguishes it from propositional logic, which does not use quantifiers or relations;[2] in this sense, propositional logic is the foundation of first-order logic.
First-order logic is the standard for the formalization of mathematics into axioms, and is studied in the foundations of mathematics.
Peano arithmetic and Zermelo?Fraenkel set theory are axiomatizations of number theory and set theory, respectively, into first-order logic. No first-order theory, however, has the strength to uniquely describe a structure with an infinite domain, such as the natural numbers or the real line.
Axiom systems that do fully describe these two structures (that is, categorical axiom systems) can be obtained in stronger logics such as second-order logic.
(引用終り)
以上

750:現代数学の系譜 雑談
21/05/31 15:34:00.81 pdrViWtM.net
>>683
追加参考
URLリンク(en.wikipedia.org)
Categorical theory
Not to be confused with Category theory.
In mathematical logic, a theory is categorical if it has exactly one model (up to isomorphism).[1] Such a theory can be viewed as defining its model, uniquely characterizing its structure.
In first-order logic, only theories with a finite model can be categorical.
Higher-order logic contains categorical theories with an infinite model.
For example, the second-order Peano axioms are categorical, having a unique model whose domain is the set of natural numbers N.
In model theory, the notion of a categorical theory is refined with respect to cardinality. A theory is κ-categorical (or categorical in κ) if it has exactly one model of cardinality κ up to isomorphism. Morley's categoricity theorem is a theorem of Michael D. Morley (1965) stating that if a first-order theory in a countable language is categorical in some uncountable cardinality, then it is categorical in all uncountable cardinalities.
Contents
1 History and motivation
2 Examples
3 Properties
(引用終り)
以上


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch