21/05/28 08:18:08.40 RuIG2yEj.net
>>556 追加
higher-order logic topos で検索すると
高名な 下記のSteve Awodey先生がヒット
Kohei Kishida Who?
” sheaf semantics, models are built on presheaves ”
なるほど、層や圏から、higher-order logicへ繋がっていくのか(^^
参考
URLリンク(arxiv.org)
Topos Semantics for Higher-Order Modal Logic March 4, 2014
Steve Awodey? Kohei Kishida† Hans-Christoph Kotzsch‡
†Department of Computer Science, University of Oxford
(抜粋)
Abstract. We define the notion of a model of higher-order modal logic
in an arbitrary elementary topos E. In contrast to the well-known interpretation of (non-modal) higher-order logic, the type of propositions is not interpreted by the subobject classifier ΩE , but rather by a suitable complete Heyting algebra H.
The canonical map relating H and