純粋・応用数学(含むガロア理論)8at MATH
純粋・応用数学(含むガロア理論)8 - 暇つぶし2ch534:現代数学の系譜 雑談
21/05/26 20:29:39.70 VMEh8nPz.net
>>486
つづき
一般の定義
I と C を圏とする。C の固定された対象 X に対して cX: I → C を定値函手とする。任意の函手 F: I → C に対して、函手


F を位相空間 X 上の C-値層とする。X の点 x を固定して、x の開近傍の全体は包含関係を逆にする順序によって(つまり U ≦ V ⇔ U ⊇ V とおいて)有向半順序集合を成す。このとき、r を制限写像とする直系 (F(U), rU,V) が得られ、この系の直極限は x における F の茎 Fx と呼ばれる。x の各近傍 U に対して標準射 F(U) → Fx は F の U 上の切断 s を茎 Fx の元 sx へ対応させる。元 sx は切断 s の x における芽と呼ばれる。
関連概念と一般化
順極限の圏論的双対は逆極限(射影極限)であり、より一般の概念として圏論における極限と余極限が定義される。用語法が少々紛らわしいが、順極限は余極限であって(圏論的)極限は逆極限である。
URLリンク(www.slideshare.net)
位相空間の開集合の成す圏 2016 august 30
HanpenRobot
8. Top(x)上の反変関手Fを前層とよぶ. Top(x)上の可換環を係数とする前層F: o ∋ U → F U , (ただし,F U は可換環) U ? V F U ρ UV F(V)
9. u x



次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch