純粋・応用数学(含むガロア理論)8at MATH
純粋・応用数学(含むガロア理論)8 - 暇つぶし2ch525:ノ,以下の定理 5 と定理 6 の証明は,次の節で議論している超準解析の(instrument)道具としての重要性 の可能性を示唆する良い例となっているので,これは数学セミナー用のヴァージョンにも含 めたかったのですが,紙数の制限で泣く泣く割愛したものです. P10 以上の用意をすると,ε-δ-論法では,きちんと書くのがそれほど簡単でない微分に関する 証明の多くが,非常に簡単に23) 得られるようになります. 以下はそのような例になっています: 定理 5. f, g : R → R を a ∈ R で微分可能な関数とするとき,fg も a で微分可能で, (fg)′(a) = f′(a)g(a) = f(a)g′(a) が成り立つ. 証明. δ を任意の無限小とする.このとき,定理 4,(1) により,f(a+δ) = f(a)+f′(a)δ+δδ∗ 略 注23) 少なくとも私は以下の定理の ε-δ-論法での証明は,講義前に証明を一度書き出してみておかないと講義中に つっかえてしまう可能性があります.これに対し,以下の証明なら,準備なしで再現できる自信があります (実際これを書くにあたってつっかえずに,じかに LATEX で直接版組みできています. (引用終り) 以上




次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch