純粋・応用数学(含むガロア理論)8at MATH
純粋・応用数学(含むガロア理論)8 - 暇つぶし2ch513:132人目の素数さん
21/05/26 14:57:55.27 O4eZsu7n.net
>>460 補足
>>有限列列(s0), (s0,s1), (s0,s1,s2), … はコーシー列ではないので極限を持ちません。
1.まず、極限 URLリンク(ja.wikipedia.org)
 「収束せず正の無限大、負の無限大、振動することを発散するという。」
2.なので、
 極限は、時枝の(>>402より)「s = (s1,s2,s3 ,・・・)∈R^N だな」
3.つまり下記だな
 1;(s1)∈R^1
 2;(s1,s2)∈R^2
 3;(s1,s2,s3)∈R^3
  ・
  ・
 n;(s1,s2,s3・・sn)∈R^n
  ・
  ・
  ↓
 極限;(s1,s2,s3 ,・・・)∈R^N
QED(^^;
(参考)
URLリンク(ja.wikipedia.org)
極限
圏論
圏 C における図式を「添字圏」 J から C への関手と見なすことにする。特定の図式に対応する関手が与えられたとき、C の対象 X と射の族 (φi: X → Fi)i∈Obj(J) に対して次のような条件を考えることができる:

このような条件を満たす X(と族 φi)のことを F が表す図式の極限(あるいは射影極限、逆極限)と呼ぶ。極限の満たす普遍性により、それぞれの図式に対する極限は(あったとして)自然な同型をのぞき一意に定まる。
URLリンク(ja.wikipedia.org)(%E5%9C%8F%E8%AB%96)
極限 (圏論)
定義
圏Cにおける極限と余極限はC上の図式に関して定義される。形式的には、形がJであるCにおける図式はJからCへの関手
F : J → C
のことである。圏Jは添字圏であるとみなし、図式FはCの対象と射をJの形に並べたものとみなす。Jの実際の対象や射は特に意味はなく―それらの繋がり方だけが意味を持っている。
圏Jとして使われるものは、多くの場合、小さい圏であり、有限であることもある。図式が小さい、有限であるなどは圏Jがそうであることをいう。
(引用終り)
以上


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch