21/05/22 15:04:07.54 C9f8fwMK.net
>>314
つづき
定義
・x が A の下界 (lower bound) であるとは、A の任意の元 y に対して y ? x となること。
・x が A の下限 (infimum) あるいは最大下界 (greatest lower bound) であるとは、x が A の下界全体の集合の最大元となること。これは存在すれば一意的に決まり、inf A あるいは glb A と表される。
・x が A の最小元 (minimum element) であるとは、x は A の元であり、かつ x は A の下界であること。これは存在すれば一意的に決まり、min A で表される。
・x が A の極小元 (minimal element) であるとは、x は A の元であり、かつ y < x を満たす y ∈ A が存在しないこと。
上界および上限の定義において、 x が必ずしも A の元であるとは限らない、ことには注意が必要である。
極大元の概念と最大元の概念は以下の点で異なる。まず x が A の極大元であるとは、A の元は「x 以下である」か、もしくは「x とは大小が比較不能である」かのいずれかである事を意味する。一方 x が A の最大元であるとは A の元は常に x 以下である事を意味する(このとき x は A の任意の元と比較が可能である)。したがって最大元は必ず極大元であるが、極大元は必ずしも最大元であるとは限らない。
(引用終り)
以上