21/05/22 09:46:30.99 C9f8fwMK.net
>>289
(引用開始)
1 基礎知識
1.1 順序数
定義 1 順序集合 X = (X, <) が整列 (well-ordered) であるとは,任意の
空でない A ⊂ X が最小元を持つことである.
注意 2
1. 整列順序集合 X は全順序集合である.
2. 順序集合 X が整列なることは次の条件 (a)+(b) と同値:
(a) X が全順序集合である.
(b) X は無限下降列を持たない.
(引用終り)
<補足>
サルは勘違いしているらしいが
「定義 1 順序集合 X = (X, <) が整列 (well-ordered) であるとは,任意の空でない A ⊂ X が最小元を持つことである.」
が先にあって、まず、ここを理解しないと(^^
で、「注意 2
2. 順序集合 X が整列なることは次の条件 (a)+(b) と同値:
(a) X が全順序集合である.
(b) X は無限下降列を持たない.」
が出るのです
無限上昇列があっても、
それが全順序、かつ”任意の空でない A ⊂ X が最小元を持つ”
の二つの条件を満たせば、
それは”整列 (well-ordered) ”なのです(^^;
以上