純粋・応用数学(含むガロア理論)8at MATH
純粋・応用数学(含むガロア理論)8
- 暇つぶし2ch288:十分条件は弱到達不能であることになる。 α_0 は正則な強極限基数である。選択公理を仮定すると、他の全ての無限基数は正則かまたは(弱)極限である。しかしながら、その両方になれるもの、即ち弱到達不能基数は中でも大きいものに限られる。 順序数が弱到達不能基数であるための必要十分条件は、それが正則順序数であり、かつ、正則順序数の列の極限であることである(0,1,α_0)は正則順序数だが正則順序数の列の極限ではない)。強極限かつ弱到達不能な基数は強到達不能である。 強到達不能基数の存在は、グロタンディーク宇宙が存在するという形で仮定される場合がある。この両者の間には深い繋がりがある。 モデルと無矛盾性 ZFCの下では、k が強到達不能であるときVk がZFCのモデルになる。 ZFの下では、k が弱到達不能であるときゲーデル宇宙のLk がZFCのモデルになる。 よって、ZF+"弱到達不能基数が存在する"はZFCが無矛盾であることを導き、不完全性定理よりその存在はZFCで証明できない。 つまり、到達不能基数は巨大基数の一種である。 (引用終り) 以上
次ページ続きを表示1を表示最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch