ガロア第一論文及びその関連の資料スレat MATH
ガロア第一論文及びその関連の資料スレ
- 暇つぶし2ch967:下記PDFがヒットしたので貼る Y.-T. Siu, Invariance of plurigenera, Invent.Math. 134 (1998), no. 3, 661?673. https://people.math.harvard.edu/~siu/siu_reprints/siu_plurigenera_invent1998.pdf Invent. math. 134, 661-673 (1998) DOI 10.1007/s002229800870 Invariance of plurigenera Yum-Tong Siu* Department of Mathematics, Harvard University, Cambridge, MA 02138, USA P2 multiplier ideal sheaf >>857再録 https://en.wikipedia.org/wiki/Multiplier_ideal Multiplier ideal In commutative algebra, the multiplier ideal associated to a sheaf of ideals over a complex variety and a real number c consists (locally) of the functions h such that |h|^2/Σ|fi^2|^c is locally integrable, where the fi are a finite set of local generators of the ideal. Multiplier ideals were independently introduced by Nadel (1989) (who worked with sheaves over complex manifolds rather than ideals) and Lipman (1993), who called them adjoint ideals. Multiplier ideals are discussed in the survey articles Blickle & Lazarsfeld (2004), Siu (2005), and Lazarsfeld (2009). Algebraic geometry In algebraic geometry, the multiplier ideal of an effective Q -divisor measures singularities coming from the fractional parts of D. Multiplier ideals are often applied in tandem with vanishing theorems such as the Kodaira vanishing theorem and the Kawamata?Viehweg vanishing theorem. Let X be a smooth complex variety and D an effective Q -divisor on it. Let μu :X'→ X be a log resolution of D (e.g., Hironaka's resolution). (引用終り) 以上
次ページ続きを表示1を表示最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch