23/02/26 16:49:06.99 ZAlHQVD3.net
>>826
>一般型 の多様体 X は最大の小平次元を持つ(小平次元は多様体の次元に等しい)。
>ある意味では、ほとんどの代数多様体が一般型である。例えば、n-次元射影空間の中の次数 d の滑らかな超曲面が一般型であることと、d > n+1 であることは同値である。従って、射影空間内のほとんどの超曲面は一般型であることが言える。
代数幾何
一般型 の多様体
は、3次元ポアンカレ予想からみの 双曲幾何(Hyperbolization theorem)に相当する部分かな
双曲幾何構造が、最も一般的とか書いてあった記憶がある
URLリンク(ja.wikipedia.org)
幾何化予想(きかかよそう、英: geometrization conjecture)は、1982年にアメリカの数学者ウィリアム・サーストンによって提出された「コンパクト3次元多様体は、幾何構造を持つ8つの部分多様体に分解される」という命題。
これにより、およそ100年にわたり未解決だった3次元ポアンカレ予想が証明されることになった。
概説
2次元多様体では3種類の幾何構造(ユークリッド構造、ロバチェフスキー構造、リーマン構造)が考えられ、全ての2次元多様体はこの内1つを自然な幾何構造�