23/02/22 11:50:34.44 JXBpR2zJ.net
>>524 関連メモ
URLリンク(eprints.lib.hokudai.ac.jp)
Author(s) 梅田, 耕平
Citation 北海道大学. 博士(理学) 甲第11363号
Issue Date 2014-03-25
学位論文内容の要旨
(指数型正則関数の層に対する楔の刃の定理とラプラス超関数)
一変数ラプラス超関数の理論は、小松彦三郎氏により確立され常微分方程式及び偏微分
方程式の解法等に応用されている。ラプラス超関数とは無限遠方で高々指数増大する正則
関数の実軸の上下からの境界値の差として表わされる。元来、古典的なラプラス変換は無
限遠方で高々指数増大する関数に対して定義された。1987 年、小松彦三郎氏はラプラス超
関数を導入し、そのラプラス変換を構成する事によりすべての佐藤超関数はラプラス超関
数に拡張可能であることを示した。そのおかげで、我々は超関数の枠組みの中で任意の増
大度を持つ関数に対してもラプラス変換を扱うことが出来るようになった。この理論をさ
らに発展させるには、ラプラス超関数の概念を局所化することでその代数的取り扱いを可
能とすることが望まれる。そこで、まずはじめに筆者は本多尚文氏との共著論文 ” On the
sheaf of Laplace hyperfunctions with holomorphic parameters” の中で無限遠方で指数
型の増大度条件を持つ正則関数に対する擬凸領域上のコホモロジー群の消滅定理を示した。
その結果により、一変数ラプラス超関数のコホモロジー的な定義を与え代数的な取扱いを
可能とした。本論文では、無限遠方で指数型の増大度条件を持つ正則関数の層に対する楔
の刃定理について述べる。この定理は多変数ラプラス超関数の層を構成する上で本質的な
役割を果たす。以下、簡単に説明する。
URLリンク(eprints.lib.hokudai.ac.jp)
Title The edge of the wedge theorem for the sheaf of holomorphic functions of exponential type and Laplace hyperfunctions
Author(s) 梅田, 耕平
Citation 北海道大学. 博士(理学) 甲第11363号
Issue Date 2014-03-25