23/02/20 08:00:01.99 /ZMay2rN.net
>>663
> 微分形式とか外微分とかいう以前
> 読めば必要十分な解説だと分かる
"必要十分な解説"?
遠山啓の「数学入門」>>636
あの~「入門」ですよ?!
必要十分? 「外積代数」(物理のかぎしっぽ)
物理で使う「外積代数」は、>>649に示した分量あるぞよw
それ、遠山の岩波新書に書ききれるはずないよねww
お主、遠山の「入門」を、"必要十分な解説"と勘違いしたんだな
そりゃー、落ちこぼれますよw
数学科で落ちこぼれて35年のおサルさん スレリンク(math板:5番)
なんか喚いているw
ワッハw
ワッハw
736:132人目の素数さん
23/02/20 08:25:36.96 /ZMay2rN.net
>>653
>著書『空間・時間・物質』(Raum, Zeit, Materie)
これ、訳本あったよね
えーと下記ね
最初は、講談社 、刊行年:昭和60か
いまは、筑摩書房の文庫本ね
だから、当時の東大の一年生向けのセミナーには使えない
(というか、訳本あったら、その本は使わないだろうがw)
URLリンク(yomitaya.co.jp)
古本よみた屋
空間・時間・物質 ヘルマン・ワイル 著 内山龍雄 訳
この商品は現在 売り切れ です。
出版元:講談社 、刊行年:昭和60 、テーマ:物理 、在庫ID:172596 、ISBN:40612210876
URLリンク(www.chikumashobo.co.jp)
筑摩書房
空間・時間・物質 上
ヘルマン・ワイル 著 , 内山 龍雄 翻訳
刊行日: 2007/04/10
737:132人目の素数さん
23/02/20 08:42:33.34 s9Rf1bwx.net
2008.8.21 津川博光
私は独学でアインシュタインの相対性理論の理論的体系を学びたいと思いました。ヘルマンワイルのほかにパウリやディラ
738:ックの相対性理論についての本が出ていましたがこのヘルマンワイルの空間・時間・物質ほど丁寧に書かれているのはありません。テンソルの概念からテンソル代数・解析などに苦戦しました。まだ今は距離連続体についての理論の勉強をしている最中ですがリーマン幾何学などの理論は大変難しいように感じます。私は高校認定試験に合格して今は大学を目指す予備校生です。高卒レベルではとても厳しいですが精進したいと思います。なお同文庫のトポロジーという本は理論理解にとても役に立っています。
739:132人目の素数さん
23/02/20 12:09:59.25 Ui41tcT+.net
>>669
> 内山龍雄 訳
内山龍雄氏とヤン=ミルズ理論の話
下記は有名だが、私が読んだのは、内山龍雄氏の本のあとがきだったかで(多分下記 内山龍雄 『一般ゲージ場論序説』岩波書店、1987年か)
ヤン=ミルズ理論を独立に考えていた
1954年5~6月頃 京大で口頭発表。もしこのときに、走り書きでもプリントを配って、アリバイがあったらと思うと残念ですが
当時は船で1か月くらいかけて、米国のプリンストンに行ったそうな
そして、米国へついたらゆっくり論文を仕上げようと思っていたら、10月に相手の論文を知り、愕然としたという
(もし現在なら、口頭発表でもエビデンスを残すだろうし、いまみたく飛行機なら1か月論文を書く時間あったかも)
(参考)
URLリンク(en.wikipedia.org)
Yang?Mills theory
History and theoretical description
This eventually became the Yang?Mills theory, as Mills himself discussed:
"During the academic year 1953-1954, Yang was a visitor to Brookhaven National Laboratory...I was at Brookhaven also...and was assigned to the same office as Yang. Yang, who has demonstrated on a number of occasions his generosity to physicists beginning their careers, told me about his idea of generalizing gauge invariance and we discussed it at some length...I was able to contribute something to the discussions, especially with regard to the quantization procedures, and to a small degree in working out the formalism; however, the key ideas were Yang's."[3]
In early 1954, Yang and Mills extended the concept of gauge theory for abelian groups, e.g. quantum electrodynamics, to non-abelian groups to provide an explanation for strong interactions.[4] Similar work was done independently in January 1954 by Ronald Shaw, a graduate student at the University of Cambridge.[5]
つづく
740:132人目の素数さん
23/02/20 12:10:55.98 Ui41tcT+.net
>>671
つづき
Since no such massless particles were known at the time, Shaw and his supervisor Abdus Salam chose not to publish their work,[5] while Pauli criticized Yang's presentation of his work with Mills in February 1954.[6]
Shortly after Yang and Mills published their paper in October 1954, Salam encouraged Shaw to publish his work to mark his contribution. Shaw declined, and instead it only forms a chapter of his PhD thesis published in 1956.[7][8] The idea was set aside until 1960, when the concept of particles acquiring mass through symmetry breaking in massless theories was put forward, initially by Jeffrey Goldstone, Yoichiro Nambu, and Giovanni Jona-Lasinio.
URLリンク(ja.wikipedia.org)
ヤン=ミルズ理論
ヤン=ミルズ理論(-りろん、英: Yang-Mills theory)は、1954年に楊振寧とロバート・ミルズによって提唱された非可換ゲージ場の理論のことである[1]。
なお、その少し前にヴォルフガング・パウリ[2][3]と内山龍雄も同理論を完成していたと言われているが、様々な事情により発表が遅れ、先取権はヤン=ミルズにあるとされる。
書籍
内山龍雄 『一般ゲージ場論序説』岩波書店、1987年。ISBN 4-00-005040-0。
URLリンク(ja.wikipedia.org)
内山 龍雄(うちやま りょうゆう、1916年(大正5年)8月28日 - 1990年(平成2年)8月30日)は、日本の物理学者(理論物理学)。
つづく
741:132人目の素数さん
23/02/20 12:11:41.70 Ui41tcT+.net
>>672
つづき
研究
ゲージ場
1954年ごろまでに、楊振寧、ロバート・ミルズとは別に重力と電磁力を結び付ける一般ゲージ理論(非可換ゲージ理論)の研究を完成させていた。同年京都大学基礎物理学研究所でのワークショップで発表したものの、反応は否定的で支持を得られなかった。( L O'Raifeartaigh"The Dawning of Gauge THeory"Princeton Univ. Press,p208-209, 『龍雄先生の冒険』窮理舎(痛恨の記))
プリンストン高等研究所へ赴任直後に楊-Millsの論文を知り愕然とし、一時発表を放棄するが、気を取り直しゲージ場の一般論として論文をまとめ直した。1955年Julyに Physical Reviewに受理され、翌1956年に出版された。
エピソード
翻訳書の序文で『昔から他国の学者の書いた書物の翻訳書を出すような者に一流の学者はいないと相場がきまっている。したがって本書を出すことは私にとってはまことにプライドをきずつけることで、本来なら、したくないことである。』と述べている[4]。
経歴
1916年8月28日 静岡県静岡市に生まれる
静岡県立静岡中学校、旧制静岡高等学校を経て大阪帝国大学に進学
1940年3月に大阪帝国大学理学部物理学科を卒業と同時に同大学副手に。その後、爾来助手、講師、助教授
1951年 理学博士(大阪大学)「On the covariant formalism of the quantum theory of fields(素粒子論、場の量子論の共変形式)」
1954年5~6月頃、楊振寧、ロバート・ミルズとは別に一般ゲージ理論の研究を完成させ、京大基礎物理学研究所で開催された小さな研究会で口頭発表していたが、1954年10月の楊(ノーベル物理学賞受賞者)とミルズの論文に対して発表が遅れたためにプライオリティは得られなかった
1954年8月からプリンストン高等研究所に研究員として渡米し、場の理論の発展に努めた
(引用終り)
以上
742:132人目の素数さん
23/02/20 16:26:34.96 7yLrs9GI.net
電磁気学を越えた量子ゲージ理論の先駆は湯川秀樹。
743:132人目の素数さん
23/02/20 22:08:11.25 s9Rf1bwx.net
湯川カップリング
744:132人目の素数さん
23/02/21 07:51:54.64 DYKCwkFh.net
Lagrange resol
745:vent 原書 仏語かな? Reflexions sur la resolution algebrique des equations, 1771. Lagrange https://fr.wikipedia.org/wiki/Joseph-Louis_Lagrange Principales publications Reflexions sur la resolution algebrique des equations, 1771. Ce memoire a inspire Abel et Galois. http://sites.mathdoc.fr/cgi-bin/oeitem?id=OE_LAGRANGE__3_205_0 Gallica-Math: ?uvres completes Joseph Louis de Lagrange Reflexions sur la resolution algebrique des equations Document (Gallica) ?uvres completes, tome 3, 205-421 (volume) Nouveaux memoires de l'Academie royale des sciences et belles-lettres de Berlin, annees 1770 et 1771 ・Section premiere. De la resolution des equations du troisieme degre 207-254 | Document ・Section seconde. De la resolution des equations du quatrieme degre 254-304 | Document ・Section troisieme. De la resolution des equations du cinquieme degre et des degres ulterieurs 305-355 | Document ・Section quatrieme. Conclusion des reflexions precedentes, avec quelques remarques generales sur la transformation des equations, et sur leur reduction ou abaissement a un moindre degre 355-421 | Document http://gallica.bnf.fr/ark:/12148/bpt6k229222d/f208
746:132人目の素数さん
23/02/21 08:31:14.59 DYKCwkFh.net
>>674-675
ありがとう
下記だね
URLリンク(www.jstage.jst.go.jp)
SoryushironKenkyu
ひろば
湯川博士の物理学
田中正 (2001年6月15日受理)
P7
朝永先生
が指摘されるように、このような先駆的な場の量子論の把握とそれへの確信が、1934年、
若冠26歳の湯川さんを世界にさきがけて、核力の中間子論に導きました。
それが1949年のノーベル賞受賞の論文
P9
こうして湯川先生の中間子論、あるいは場の量子論による素粒子相互作用の時空間的記
述が達成されたことで、それに先立っ量子力学でのSchr6dingerとHeisenbergの問の時空
間をめぐる前述の論戦も、Schr6dingerに有利に決着がついたとみることができます。
P15
60年代に入って
以降、素粒子の世界は「複合模型」と相互作用の「ゲージ原理」の登場によって、大きく
変貌しますが、湯川先生のこの「素粒子模型IVjは、今日の「標準模型」の原型を与え
るものであり、そこで提案された新中間子(?)は今日の弱ゲージ・ボゾンの先駆をなす
ものであった点を、この際指摘したいと思います。
III「マルの理論」一正統的場の量子論への挑戦
「場の理論の基礎について」
つぎに湯川先生の生涯の課題となったF素粒子の時空記述」の研究に話題を移します。
その出発はしかし前に触れましたように、中間子論の研究の真っ最中の1934年の春、数
物学会で発表された「相対性量子力学における確率振幅について」、いわゆる先生の「マ
ルの理論」にさかのぼります。そして本格的な取り組みへの基礎は、1942年の『科学』に
連載される「場の理論の基礎にっいて」(著作集8学術篇Dに詳しく展開されています。
これはまだ先生が35歳の最も気鋭の時代です。その時点ですでにこれほどに根底的な「場
の量子論」への思索がなされていることは、驚
747:嘆すべき事実です。 ここから正統的局所場の理論、素粒子の「点模型」からの離脱がはじまるわけですが、 それへのそもそもの動機はさきにも述べた湯川先生が大学卒業直後に没頭したHeisenberg? Pauliの場の量子論であり、そこに指摘されているこの理論に固有な「発散の困難」にあ ることは明らかです。
748:132人目の素数さん
23/02/21 12:02:02.32 8nIQkhq9.net
>>676
追加
URLリンク(en.wikipedia.org)(group_theory)
Lagrange's theorem (group theory)
History
Lagrange himself did not prove the theorem in its general form. He stated, in his article Reflexions sur la resolution algebrique des equations,[3] that if a polynomial in n variables has its variables permuted in all n! ways, the number of different polynomials that are obtained is always a factor of n!. (For example, if the variables x, y, and z are permuted in all 6 possible ways in the polynomial x + y - z then we get a total of 3 different polynomials: x + y - z, x + z - y, and y + z - x. Note that 3 is a factor of 6.) The number of such polynomials is the index in the symmetric group Sn of the subgroup H of permutations that preserve the polynomial. (For the example of x + y - z, the subgroup H in S3 contains the identity and the transposition (x y).) So the size of H divides n!. With the later development of abstract groups, this result of Lagrange on polynomials was recognized to extend to the general theorem about finite groups which now bears his name.
In his Disquisitiones Arithmeticae in 1801, Carl Friedrich Gauss proved Lagrange's theorem for the special case of
(Z/pZ)^*, the multiplicative group of nonzero integers modulo p, where p is a prime.[4] In 1844, Augustin-Louis Cauchy proved Lagrange's theorem for the symmetric group Sn.[5]
Camille Jordan finally proved Lagrange's theorem for the case of any permutation group in 1861.[6]
749:132人目の素数さん
23/02/21 23:35:21.05 DYKCwkFh.net
>>653
>彼は一般相対性理論の発展を追った著書『空間・時間・物質』(Raum, Zeit, Materie) を1918年に発表したが、これは広く読まれ、1922年には第4版が出版された。
>東大の一年生向けのセミナーの教材がこれだったが
>いきなり原書講読だったのでたまげた。
余談ですが
過去ガロアスレで、当時は有名な”猫”さんというコテハンの人が
彼は阪大基礎工から修士RIMSだったと思うが
当時教授だった荒木不二洋先生に、ある量子力学の記述
について質問にいったら
(スレーターの量子力学だったと思うが、適当なのがヒットしないので記憶違いかも)
荒木先生が「私もその本の原書を高校時代に読んだが*)、そこの記述はおかしいと思うが、君はどう考えるのか? 説明したまえ」
みたいこと言われたそうな
(*)荒木先生は、お父さんも京大の物理学者で、書斎の物理や数学の本を勝手に読んだのでしょうね)
細かい顛末は、彼は書かなかったが、私は腰を抜かしそうになった
荒木先生が、高校生時代に、量子力学の原書を読んだことにね
(シュレーディンガー方程式(複素数の偏微分方程式)を理解するには、偏微分とか多変数の積分とかも分かってないといけない。つまり、大学の数学が分かっている)
まあ、そういう人いるんだね。外国だったら、飛び級だろう
宮岡礼子氏が、数理科学 2022年10月号に書いていたが(下記)、「ランドセルに解析概論が入っていた」「16歳でプリンストン大学入学」という天才がいるそうな
東大だと、今も昔も各学年にそういう人が何人かいて、『空間・時間・物質』(Raum, Zeit, Materie) の原著(さすがに英語?w)�
750:ェ苦にならない人がいたろう で、その他の人も、それ必死についていく セミナーが終われば 自信がつくだろう(それが狙いか) つづく
751:132人目の素数さん
23/02/21 23:35:50.64 DYKCwkFh.net
>>679
つづき
(参考)
URLリンク(ja.wikipedia.org)
荒木不二洋
荒木 不二洋(あらき ふじひろ、1932年7月28日 - 2022年12月16日)は、日本の数学者・数理物理学者。京都大学名誉教授。京都大学数理解析研究所元所長。専門は場の量子論・量子統計力学の代数的構造論、作用素環論。父は京都大学名誉教授荒木源太郎。
URLリンク(en.wikipedia.org)
John C. Slater
URLリンク(ja.wikipedia.org)
宮岡 礼子(みやおか れいこ、1951年[1] - )は、日本の数学者。理学博士。東北大学名誉教授[1]。専門は曲面論、超曲面論、可積分系、特殊幾何学、G‐構造論。夫は同じく数学者の宮岡洋一。
1951年東京都生まれ[1]。1969年東京都立戸山高等学校卒業。1969~1973年東京工業大学理学部数学科入学及び卒業[2]。
脚注
2^“宮岡礼子 研究室の窓 原点は極小曲面 数理科学 2022年10月号P70 No.712「東大の入試がなかった1969年に入学」”. 株式会社 サイエンス社. 20230205閲覧。
(引用終り)
以上
752:132人目の素数さん
23/02/22 07:03:39.98 EQcdNkCP.net
荒木先生とタクシーに同乗して
鴨沂高校の近くを通りかかったとき
16歳で
先生の代わりに授業をしていたことを聞いてたまげた
753:132人目の素数さん
23/02/22 07:40:56.61 7A0Xb0pJ.net
>>679
>(スレーターの量子力学だったと思うが、適当なのがヒットしないので記憶違いかも)
思い出した
シッフの量子力学でした
下記ですね
”一通り他の入門書をやってからじゃないと読むのがキツイと思う”とあるね
URLリンク(www.)<)
Leonard Isaac Schiff was born in Fall River, Massachusetts, on March 29, 1915[1] and died on January 21, 1971, in Stanford, California. He was a physicist best known for his book Quantum Mechanics,[2][3] originally published in 1949 (a second edition appeared in 1955 and a third in 1968).
References
2. "Archived copy" (PDF). Archived from the original (PDF) on 2010-07-07. Retrieved 2009-10-30.
3. Seitz, Frederick (1950). "Review: L. I. Schiff, Quantum Mechanics". Bull. Amer. Math. Soc. 56 (2): 191?192. doi:10.1090/s0002-9904-1950-09377-x.
754:132人目の素数さん
23/02/22 07:47:25.14 7A0Xb0pJ.net
>>681
ありがとう
>荒木先生とタクシーに同乗して
>鴨沂高校の近くを通りかかったとき
> 16歳で
>先生の代わりに授業をしていたことを聞いてたまげた
それ良い話だね
高校の先生も、荒木不二洋氏をどう扱うかについて考えて
「教師役をやらせた方が、彼のためになる」
と思ったんだろうね
その高校教師は、良い先生だったね、きっと
755:132人目の素数さん
23/02/22 08:31:15.41 EQcdNkCP.net
大学院入試の問題を作ったとき
たまたま荒木先生の作られた問題とそっくりだった。
「やさしい問題は解析でも代数でも同じだね」とコメントされた。
代数の問題を作ったつもりはなかったのに。
756:132人目の素数さん
23/02/22 11:36:31.39 qluR4s9c.net
>>679
Evansの偏微分方程式の本はB5より少しデカくて保管法がよく分からないだけでなく
そういうサイズの本にシュレーディンガー方程式の本は比較的多くあるから
サイズがB5またはそれより少しデカいムック本や数学書を狭い部屋で読むときの保管法について聞きたいが、
Evansやムック本を読むときはどのようにして保管するのがベストなんだ?
今までその種の本は横積みにして保管していたが、横積みだと読む度に置き場所から取り出すとき面倒だし、
普通通りに立てて保管すると狭い部屋では読む本が特別デカく感じられて読み書きする場所での動きに少し制限が加わる
金子の本はそういう保管法を気にしなくてよくシュレーディンガー方程式の入門には丁度いい本だけどな
757:132人目の素数さん
23/02/22 11:49:28.68 NtG6E3la.net
>>680
宮岡、猪瀬は東工大のあの学年で
抜きんでていたそうだね
758:132人目の素数さん
23/02/22 11:50:34.44 JXBpR2zJ.net
>>524 関連メモ
URLリンク(eprints.lib.hokudai.ac.jp)
Author(s) 梅田, 耕平
Citation 北海道大学. 博士(理学) 甲第11363号
Issue Date 2014-03-25
学位論文内容の要旨
(指数型正則関数の層に対する楔の刃の定理とラプラス超関数)
一変数ラプラス超関数の理論は、小松彦三郎氏により確立され常微分方程式及び偏微分
方程式の解法等に応用されている。ラプラス超関数とは無限遠方で高々指数増大する正則
関数の実軸の上下からの境界値の差として表わされる。元来、古典的なラプラス変換は無
限遠方で高々指数増大する関数に対して定義された。1987 年、小松彦三郎氏はラプラス超
関数を導入し、そのラプラス変換を構成する事によりすべての佐藤超関数はラプラス超関
数に拡張可能であることを示した。そのおかげで、我々は超関数の枠組みの中で任意の増
大度を持つ関数に対してもラプラス変換を扱うことが出来るようになった。この理論をさ
らに発展させるには、ラプラス超関数の概念を局所化することでその代数的取り扱いを可
能とすること�
759:ェ望まれる。そこで、まずはじめに筆者は本多尚文氏との共著論文 ” On the sheaf of Laplace hyperfunctions with holomorphic parameters” の中で無限遠方で指数 型の増大度条件を持つ正則関数に対する擬凸領域上のコホモロジー群の消滅定理を示した。 その結果により、一変数ラプラス超関数のコホモロジー的な定義を与え代数的な取扱いを 可能とした。本論文では、無限遠方で指数型の増大度条件を持つ正則関数の層に対する楔 の刃定理について述べる。この定理は多変数ラプラス超関数の層を構成する上で本質的な 役割を果たす。以下、簡単に説明する。 https://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/55565/1/Kohei_Umeta.pdf Title The edge of the wedge theorem for the sheaf of holomorphic functions of exponential type and Laplace hyperfunctions Author(s) 梅田, 耕平 Citation 北海道大学. 博士(理学) 甲第11363号 Issue Date 2014-03-25
760:132人目の素数さん
23/02/22 11:57:26.33 NtG6E3la.net
>>687
ヘルマンダーの定理の系と思ったらいけないの?
761:132人目の素数さん
23/02/22 12:13:16.59 qluR4s9c.net
中身はヒルベルト空間での超局所解析だな
762:132人目の素数さん
23/02/22 12:13:30.42 JXBpR2zJ.net
>>684
ありがとうございます。
面白い話ですね
763:132人目の素数さん
23/02/22 12:18:40.46 qluR4s9c.net
>>687
金子は余り難しくなく、シュレーディンガー方程式や超局所解析に興味があるなら、金子は読んでおいた方がいいと思う
764:132人目の素数さん
23/02/22 12:20:54.60 JXBpR2zJ.net
>>685
>金子の本はそういう保管法を気にしなくてよくシュレーディンガー方程式
金子氏ね
下記の金子氏とは違うんだろうね
URLリンク(www.jstage.jst.go.jp)
J-STAGEトップ/日本物理学会誌/73 巻 (2018) 6 号/書誌
解説
量子力学から熱力学第二法則へ
金子 和哉, 伊與 田英輝, 沙川 貴大
URLリンク(www.jstage.jst.go.jp)
>Evansの偏微分方程式の本はB5より少しデカくて保管法がよく分からないだけでなく
さあ?
私にも分からない
765:132人目の素数さん
23/02/22 12:29:46.01 JXBpR2zJ.net
>>688
>ヘルマンダーの定理の系と思ったらいけないの?
すんません
詳しくないです
素人です
えーと、梅田耕平氏のは、佐藤超関数によるラプラス超関数なので
自分的には、佐藤超関数によるラプラス変換の理論を知らなかったので、メモとして貼りました
(フーリエ変換が普通でよくある)
ヘルマンダーの定理が、どれか分からない(というか、これ と言われても分からないかも)
が、記憶ではヘルマンダー氏は、シュワルツ超関数を扱っていたと思うので
梅田耕平氏のDR論文は、佐藤超関数によるラプラス変換ってところが新味と見ました
766:132人目の素数さん
23/02/22 12:35:02.37 qluR4s9c.net
>>692
>URLリンク(www.jstage.jst.go.jp)
>J-STAGEトップ/日本物理学会誌/73 巻 (2018) 6 号/書誌
>解説
>量子力学から熱力学第二法則へ
>金子 和哉, 伊與 田英輝, 沙川 貴大
金子晃という人が書いた本で、物理的な視点でも書かれている
>>Evansの偏微分方程式の本はB5より少しデカくて保管法がよく分からないだけでなく
>
>さあ?
>私にも分からない
どういう選択肢を取る? 何しろ分厚くてサイズがデカいから、
マジメに習慣的に読もうとすると意外に深刻な問題になると思う
767:132人目の素数さん
23/02/22 13:20:31.87 JXBpR2zJ.net
>>687
>宮岡、猪瀬は東工大のあの学年で
>抜きんでていたそうだね
猪瀬さんか
寡聞にして存じ上げないし
検索してもヒットしなかった
768:132人目の素数さん
23/02/22 14:10:23.08 89Mu/Xha.net
正標数のK3
769:132人目の素数さん
23/02/22 14:57:39.44 EQcdNkCP.net
nose's construction and elliptic K3 surfaces with Mordell-Weil rank 15 revisited
Abhinav Kumar, Masato Kuwata
770:132人目の素数さん
23/02/22 15:35:54.65 EQcdNkCP.net
失礼しました
Inose's construction and elliptic K3 surfaces with Mordell-Weil rank 15 revisited
Abhinav Kumar, Masato Kuwata
771:132人目の素数さん
23/02/22 16:24:56.62 JXBpR2zJ.net
>>698
ありがとうございます
下記ですね
Hiroshi Inose氏 ね
京都大学の教授だったか
URLリンク(arxiv.org)
Contemporary Mathematics
Volume 703, 2018
URLリンク(dx.doi.org)
Inose’s construction and elliptic K3 surfaces with Mordell-Weil rank 15 revisited
Abhinav Kumar and Masato Kuwata
References
[I1] Hiroshi Inose, On certain Kummer surfaces which ca
772:n be realized as non-singular quartic surfaces in P3, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), no. 3, 545?560.MR0429915 [I2] Hiroshi Inose, Defining equations of singular K3 surfaces and a notion of isogeny, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya Book Store, 1978, 495?502. MR0578868 [SI] Tetsuji Shioda and Hiroshi Inose, On singular K3 surfaces, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 119?136. MR0441982 http://gcoe.math.kyoto-u.ac.jp/ 京都大学 グローバル COEプログラム http://gcoe.math.kyoto-u.ac.jp/product/chukanhokoku.html HOME >> 研究成果 >>中間報告書・外部評価報告書 http://gcoe.math.kyoto-u.ac.jp/docs/2010chukanhokoku.pdf 中間報告書2010 はじめに Global COE プロジェクト「数学のトップリーダーの育成」を開始してから,1年半が 経過した.国際交流などによるコア数学における研究者育成と多様な人材育成の2つの事業を行っている. 【講演】 Cohomologically trivial involutions of Enriques surfaces and Shioda-Inose correspondence, “Algebraic Geometry”, Lorentz Center, Leiden, the Netherland, July 2, 2008 (International conference) Homologically trivial involutions and Shioda-Inose correspondences for U+U(2), “Moduli and Discrete Groups”, Res. Inst. Math. Sci., Kyoto Univ., June 10, 2009 (International conference)
773:132人目の素数さん
23/02/22 16:52:59.25 AWMaTxET.net
金子晃さん、猪瀬博司さんたち検索引用間違いだらけだな
やめたらどう、どうせ知らない世界だろうけど
774:132人目の素数さん
23/02/22 18:53:14.57 EQcdNkCP.net
どこから「京都大学教授」が出て来たのやら
775:132人目の素数さん
23/02/22 19:25:52.60 JXBpR2zJ.net
>>700
>猪瀬博司さんたち検索引用間違いだらけだな
ごめん
猪瀬博司さんね。夭逝されたのか!
本「数学にかけし若き命 数学者・猪瀬博司」があるね
あと、彼の数学ノートがヒットしたのでURL貼っておく
URLリンク(twitter.com)
ツイート
数学の歩みbot
@Auf_Jugendtraum
君は落ち着いた静かな学生で,君のきわ立った秀才ぶりよりは,君の優しい笑顔の方が,私の思い出の中にある.君の笑顔を思い出すことは,今となっては,散り果てた花の姿を追うような,幽かな幻を心の中に観るような所がある.(志賀浩二 / 猪瀬博司氏を偲んで)
2018年10月28日
URLリンク(twilog.org)
数学の歩みbot@Auf_Jugendtraum 2019年02月
彼の如く豊かな才能に恵まれ,愛され期待された人が癌に犯され若くして逝かねばならぬとは何故であろうか.この決して回答の得られぬ,何故か,をどうしても問わずにはいられない.(飯高茂 / 猪瀬博司氏を偲んで)2月28日
数学の歩みbot@Auf_Jugendtraum
猪瀬君が志して果たし得なかった理論は彼の後の人々によって必ずや発展させられ結局は乗り越えられるでしょう.これは純粋真理探求の学としての数学の必然です.しかし,個性の発露としての猪瀬君の数学の形成�
776:Cこれは誰にもできません.猪瀬君の数学を失った数学界の損失は限りなく大きい.(飯高茂)2月28日 数学の歩みbot@Auf_Jugendtraum 佐野君のゼミも参加者が少なすぎるようだ.授業時間の間にやる時しかでてこないという人が大半だからだ.放課後でもいつでも数学と聞けば飛んでくるような情熱家はいないのだろうか?いったい皆,どういうつもりでこの数学科に入ってきたのだろうか?理解に苦しむ.(猪瀬博司)2月28日 https://ci.nii.ac.jp/ncid/BA55270799 大学図書館所蔵?7件 / 全7件 https://www.meirinkanshoten.com/products/detail/653201 明倫館書店 数学にかけし若き命 数学者・猪瀬博司 研究論文/日記・創作/思い出 【著者名 】猪瀬博司/遺稿集発行有志会編集(飯高茂) 【出版社 】論文集刊行会 【発行年度】昭和54年 つづく (deleted an unsolicited ad)
777:132人目の素数さん
23/02/22 19:26:35.09 JXBpR2zJ.net
>>702
つづき
URLリンク(www.ac-net.org)
Academia e-Network Project
URLリンク(www.ac-net.org)
数学雑記帳 (by 猪瀬博司)2012-05-07
・内容見出
・No 17 数学雑記帳 IV (1965.3) (260MB)
・No 19 数学雑記帳 V Algebra (226MB)
・No 21 数学雑記帳 VI (337MB)
・No 23 数学雑記帳 VII (60MB)
・No 25 代数 1 (60MB)
・No 27 代数 2 (98MB)
・No 28 行列 1 (340MB)
・No 32 雑記帳 VIII,1967-8 (129MB)
・数学雑考 1969 (95MB)
URLリンク(www.ac-net.org)
内容見出
目 次
1 No 17 数学雑記帳 IV (1965.3) 2
2 No 19 数学雑記帳 V Algebra 3
3 No 21 数学雑記帳 VI 4
4 No 23 数学雑記帳 VII 6 (p58 1967 年計画 p78 セミナー 67.5 1.より)
5 No 25 代数 1 8 (1966.10.1-12.29 「本ノートは洛北図書館 412W1 「現代代数学1」による)
6 No 27 代数 2 8 (1966.12.29 「本ノートは洛北図書館 412W1 「現代代数学1」による)
7 No 28 行列 1 8
8 No 32 雑記帳 VIII,1967-8 9
9 数学雑考 1969 11 ( 特殊な代数曲面について,p36,1974/5 が最後みたい)
(引用終り)
以上
778:132人目の素数さん
23/02/22 19:30:48.20 7FeF3fe4.net
クラメルの公式
証明の概略と一般化について
URLリンク(ja.wikipedia.org)
779:132人目の素数さん
23/02/22 19:32:49.51 7FeF3fe4.net
幾何学的代数の要旨
金谷健一 (岡山大学名誉教授)
URLリンク(iim.cs.tut.ac.jp)
780:132人目の素数さん
23/02/22 21:29:05.75 7A0Xb0pJ.net
>>704-705
ありがとう
781:132人目の素数さん
23/02/22 21:42:51.33 7A0Xb0pJ.net
>>701
>どこから「京都大学教授」が出て来たのやら
質問していい?
Q1. 猪瀬博司とあなたのInose>>698と、Hiroshi Inose[I1] [I2] >>699 と、 Shioda-Inose >>699
この4者は同一人物ですか?
Q2. 猪瀬博司氏>>702は、学部は69年東工大入学として
”猪瀬博司/遺稿集発行有志会編集(飯高茂)”など>>702を見ると
修士では、東大の数学科修士にしたのかな?
782:132人目の素数さん
23/02/22 22:05:53.90 EQcdNkCP.net
>>707
Q1の答:だと思う
Q2の答:だと思う.城之崎で会ったときは東大だったので、学部も東大だと長い間思い込んでいた。
783:132人目の素数さん
23/02/23 00:10:45.58 03KDcN8J.net
>>700
>金子晃さん
本名 アレクセイカーネンコ か
著書「超函数入門」ありましたね
チラ見した気がする
URLリンク(www.kanenko.com)
ようこそ, アレクセイカーネンコ応用数理研究室へ!
Welcome to Alexei KANENKO's Web Site!
URLリンク(www.kanenko.com)
金子晃の著書のサポートページ
超函数入門のページ
出版履歴
・2013 年:ペーパーバック版が刊行された.初刷の際に1ページ落丁が見つかり, 回収するという事件が発生した.
URLリンク(webcache.googleusercontent.com)
HMV&BOOKS online
金子晃 プロフィール
1968年東京大学理学部数学科卒業。1973年東京大学教養学部助教授。1987年東京大学教養学部教授。1997年お茶の水女子大学理学部情報科学科教授。理学博士、東京大学・お茶の水女子大学名誉教授(本データはこの書籍が刊行された当時に掲載されていたものです)
URLリンク(research-er.jp)
日本の研究.com
金子晃 KAKEN
一般研究(C)
・量子力学の準古典近似の研究
・高次元ソリトンの挙動に関する研究
784:132人目の素数さん
23/02/23 00:43:27.51 03KDcN8J.net
>>708
回答ありがとうございます
なるほど、良く分かりました
【著者名 】猪瀬博司/遺稿集発行有志会編集(飯高茂) 【発行年度】昭和54年
ということは、ご逝去は、S52~S54かな
いや、残念ですね
ご存命だと思ったので >>699
京都大学 グローバル COEプログラム 中間報告書2010
【講演】 Shioda-Inose correspondenceなどを見て
てっきり、京都大学に就職されたと思いました
遺稿集発行有志会編集(飯高茂)>>702ということは
東大では、飯高茂先生と同じ講座か
学部が東工大で、志賀浩二先生のところで、昭和54年は志賀先生は教授だったんだね(下記)
ようやく分かりました
志賀先生、”矢野健太郎に師事”とあるね
矢野先生の”著作 『相対性理論』福原満洲雄監修、至文堂〈近代数学新書〉1963年”を読んだ気がする
最後の付録に、統一場理論の解説があって、5次元を使うカルツァークライン理論の解説だった(下記)
URLリンク(ja.wikipedia.org)
志賀浩二
志賀 浩二(しが こうじ、1930年(昭和5年)10月8日 - )は、日本の数学者。理学博士(東京大学・論文博士・1964年)。東京工業大学名誉教授。専門は微分位相幾何学、数学教育[1]。
1953年(昭和28年)に新潟大学を卒業、東京大学大学院数物系研究科数学専攻修士課程に入学、矢野健太郎に師事[4]、1955年(昭和30年)に修了。
(1967年(昭和42年)東京工業大学理学部数学科助教授)
1975年(昭和50年)に東京工業大学理学部数学科教授に就任、1988年(昭和63年)に東京工業大学を退官、桐蔭学園横浜大学工学部教授に就任、2004年(平成16年)に桐蔭横浜大学を退職。
つづく
785:132人目の素数さん
23/02/23 00:44:47.75 03KDcN8J.net
>>710
つづき
URLリンク(ja.wikipedia.org)(%E6%95%B0%E5%AD%A6%E8%80%85)
矢野健太郎 (数学者)
矢野 健太郎(やの けんたろう、1912年(明治45年)3月1日 - 1993年(平成5年)12月25日)は、日本の数学者。東京工業大学名誉教授。専門は微分幾何学。
数学者として
小学生のときにアインシュタインの訪日と相対性理論に関するニュースを聞く。旧制高校在籍中に、相対性理論を理解するには微分幾何学、特にその中のリーマン幾何学を良く理解していなければならないと、当時東大助教授だった理論物理学者の山内恭彦に言われ[1][2]、 東京帝国大学では幾何学を専攻、1934年(昭和9年)に卒業して大学院に進む。同時に東京物理学校の講師に就任。その当時グレゴリオ・リッチ (Curbustro Gre
786:gorio Ricci) 、レビ・チビタ (Tullio Levi-Civita) などの絶対微分学が確立されつつある時代で、いち早くその重要性に着目した。またおなじころ、発展中であった、エリ・カルタンの接続の概念に注目し、カルタンの下での研究を志し、1936年(昭和11年)にパリ大学へ留学した。 パリ大学で提出した射影接続空間に関する論文により理学博士の学位を得る。1941年 東京大学 、理学博士 論文は仏文である。「共形接続空間の理論について(仏文)」。[3] 高校生のときから相対性理論に興味を持っていたこともあり、統一場理論に関する論文も発表している。 プリンストン高等研究所ではサロモン・ボホナー (en:Salomon Bochner) のもとで大域微分幾何学の研究を主に行い、ボホナーとの共著も出版されている。 当時、同じくプリンストン高等研究所にいたアインシュタインと親交を深める。矢野の夫人とアインシュタインが腕を組んでいる写真は矢野家の家宝とのことである。その当時のことを記した『アインシュタイン伝』[4]は代表作である。 遠山啓と共に雑誌『数学セミナー』の創刊に寄与し、多くの記事を執筆している[要出典]。 著作 ・『相対性理論』福原満洲雄監修、至文堂〈近代数学新書〉、1963年 つづく
787:132人目の素数さん
23/02/23 00:45:09.65 03KDcN8J.net
>>711
つづき
URLリンク(ja.wikipedia.org)
カルツァ=クライン理論(カルツァ=クラインりろん、Kaluza-Klein theory、KK理論)は、重力と電磁気力を統一するために五次元以上の時空を仮定する理論である。理論物理学者のテオドール・カルツァが1921年に提唱し、1926年にオスカル・クラインが修正した。
(引用終り)
以上
788:132人目の素数さん
23/02/23 04:06:24.26 4pLa03iF.net
コピペ魔 コピペ魔
789:132人目の素数さん
23/02/23 07:36:04.97 6ks1hqJf.net
しょうがないよ
大学の数学も物理も理解できず
負けてクソサラリーマンに成り下がった
淋しい耄碌爺だから
人生ゼロ なんにもなし
790:132人目の素数さん
23/02/23 07:43:52.43 6ks1hqJf.net
まあ人生に数学も物理も必要ないんですがね
必要ないことを必要だと誤解して
好きでもないのに好きだとウソついて
全く理解できないのに面白いとウソつく
勘違いなことやってる時点で
人生ボロ負けですわ
目ぇ覚ませ
791:132人目の素数さん
23/02/23 08:06:50.73 fP7IBK5f.net
>>710-712
どんな形にせよ
称号を授けられたことは
活躍が認めらたことと
受け取ってよいと思います。
792:132人目の素数さん
23/02/23 08:12:14.36 6ks1hqJf.net
昭和時代のカン違い野郎が勉強したがるもの
相対性理論
ガロア理論(群論)
平成時代のカン違い野郎が勉強したがるもの
超弦理論
数論幾何(圏論)
793:132人目の素数さん
23/02/23 08:13:38.23 fP7IBK5f.net
令和は?
794:132人目の素数さん
23/02/23 08:15:19.80 fP7IBK5f.net
量子力学は大正?
795:132人目の素数さん
23/02/23 08:46:02.47 03KDcN8J.net
>>709 追加
URLリンク(www.jstage.jst.go.jp)
最近の日本の数学(そのI)
超函数論
河田 敬義, 河合 隆裕
数学 1973 年 25 巻 1 号 p. 68-70
発行日: 1973/01/30
URLリンク(www.jstage.jst.go.jp)
超函数論 河合 隆裕 数学 1973 年 25 巻 1 号 p. 68-70
Fourier超函数の理論は金子晃によつて超函数の構造の研究に有効に用いら
れた[21].さらに金子は無限階微分作用素の理論を実解
析解の研究にも有効に利用した[20],[21].
文 献
[20] A. Kaneko, On conti
796:nuation of regular soluti ons of partial differential equations to compact convex sets, J. Fac. Sci. Univ. Tokyo, 17 (1970), 567-580.-, Ibid. II. Ibid .,18(1971),416-433. [21) -,Fundamental principle and extension of solutions of partial differential equations with constant coefficients, Hyperfunctions and Pseudo- differential Equations, Part I, Proceedings of a Conference at Katada,1971, Springer, Lecture Notes in Mathematics, to appear.
797:132人目の素数さん
23/02/23 09:14:42.67 03KDcN8J.net
>>715
これは、これは
サイコパスのおサルさんですねw スレリンク(math板:5番)
>まあ人生に数学も物理も必要ないんですがね
反例がすぐ見つかるぞ!w
>全く理解できないのに面白いとウソつく
>勘違いなことやってる時点で
>人生ボロ負けですわ
自分の人生や姿を、こっちに投影されても ご迷惑ですよwww
十で神童、二十過ぎれば ただの某数学科落ちこぼれでしょ?
あんた、大学の確率論落としたね?
だから、時枝記事不成立が分からないんだね!w スレリンク(math板)
(参考)
URLリンク(kotobank.jp)
コトバンク
十で神童十五で才子二十過ぎれば只の人
ことわざを知る辞典の解説
子供の頃には神童といわれた者も、多くは、長ずるにしたがって並の秀才となり、大人になるころには凡庸な人間になってしまう。
[使用例] 十で神童、十五で才子、二十過ぎれば並の人、ということもあるから、子供の時に悧り巧こうでも大人になって馬鹿にならないとは限らない[芥川龍之介*才一巧亦不二|1925]
798:132人目の素数さん
23/02/23 09:18:41.63 03KDcN8J.net
>>713
>コピペ魔 コピペ魔
ありがと
・ここは、天下のチラシの裏(コピーもありだよ)
・コピペするとき、読んで、要点をコピーする。それも一つの勉強
・コピーしておくと、キーワード検索で便利です
以上
799:132人目の素数さん
23/02/23 09:51:04.04 6ks1hqJf.net
>>721
>>まあ人生に数学も物理も必要ないんですがね
> 反例がすぐ見つかるぞ!
耄碌爺の人生とは無関係
自分の平成サラリーマン人生の中で
どれほどの数学と物理が必要だった?
高校レベルで十分だっただろ?
それが答え
>>人生ボロ負けですわ
> 自分の人生や姿を、こっちに投影されても ご迷惑ですよ
いや学歴乞食の君自身の姿ですよ
わたしに投影しようとして無理ですから
残念!!!
800:132人目の素数さん
23/02/23 10:05:44.94 6ks1hqJf.net
>>722
>大学の確率論落としたね?
>だから、時枝記事不成立が分からないんだね!
選択公理が分からない、高卒落ちこぼれが
時枝正に嫉妬して、「箱入り無数目は間違ってる!」と発○
ああ ミットモナイ
801:132人目の素数さん
23/02/23 10:36:00.54 03KDcN8J.net
>>709
下記 河合,金子は、カーネンコ節炸裂ですねw
URLリンク(www.jstage.jst.go.jp)
数学25巻,3号(超函数特集号)1973
URLリンク(www.jstage.jst.go.jp)
超函数と定数係数線型偏微分方程式論
河合隆裕,金子晃 1973年25巻3号p.239-253
V.V.Grusin[1]はC∞解について一つの十分条件を与えたが,金子[9]は
彼の結果を受けて実解析解が「点に接続できるた,めの必要十分条件を決定した.そこで与えられた
証明は超函数の軟弱性を用い,また局所作用素が
最初に有効に使われた例として重要であった.
彼のその後の仕事では実解析函数は§1の末尾に述
べられているような局所作用素を用いた把え方に
より一貫して扱われているが,§3における記述は(編集者の意向に反して!)やや異った流儀でなされているようである.
§5はいわゆるFundamental Princip1eの要約と,それから得られる諸結果が述べられている.
超函数的定数係数偏微分方程式論で最後に残っていた同次解の指数函数表示定理がここに示されている.
(ある毒舌家日く,Fundamental Principleなどと名の付くものが現われたら,もうその分野はおしまいなのだ!?)
最後に,共著者のうちの一人が海外に出張中で
あったため全般にまとまりの欠けたことを読者におわびしたい.
目次
§1.Fourier超函数一その定義と主要性質.
§2.定数係数線型無限階微分方程式..
§3.実解析解の延長.,
§4.方程式系の超函数解の一般論.
§5.FundamentalPrincipleとその応用.
URLリンク(www.jstage.jst.go.jp)
佐藤超函数と微分方程式 小松彦三郎 1973年25巻3号p.193-212
URLリンク(www.jstage.jst.go.jp)
超函数論における擬微分方程式論
佐藤 幹夫, 河合 隆裕, 柏原 正樹 数学/25 巻 (1973) 3 号 書誌
URLリンク(www.jstage.jst.go.jp)
文献表 1973年25巻3号p.273-282
802:132人目の素数さん
23/02/23 11:02:38.93 03KDcN8J.net
>>725
思い出したので書くが
下記 小松 双対空間としての超函数からみで、下記 山中健:[1]線型位相空間と一般関数 を読んだ
佐藤超関数は、試料函数を解析関数とってあるので、シュワルツの超関数より広いと書いてあった
(シュワルツの場合、試料函数は無限回微分可能な関数)
URLリンク(www.jstage.jst.go.jp)
佐藤超函数と微分方程式小松彦三郎1973年25巻3号p.193-212
P5
§4.Distributionとultradistributionの埋込み.
試料函数の空間を小さくすれば,双対空間である超函数の空間は大きくなるという原理に基づい
てdistributionを拡張する試みは数多くなされている.ここではBeurling(Bjorck[1]参照)お
よびRoumieu[1]が導入した超函数の族をとりあげる.
URLリンク(www.jstage.jst.go.jp)
文献表1973年25巻3号p.273-282
P282
山中健:[1]線型位相空間と一般関数 共立豫学講座16, 1966.
URLリンク(dl.ndl.go.jp)
目次
1. 線形空間と線形位相空間/p1
2. 局所凸線形位相空間/p7
3. Hahn‐Banachの定理/p14
4. 局所凸空間の主要な型/p21
5. 局所凸空間の列の帰納極限/p27
6. 線形写像の可逆定理,閉グラフ定理/p33
7. 空間L(S,T),Banach‐Steinhausの定理/p37
8. 局所凸空間の共役空間/p44
9. 弱位相の双対性/p48
10. 双対位相,Mackeyの定理/p51
11. 回帰性の問題/p57
第2章 一般関数の理論と応用
12. 試料関数と一般関数/p65
13. 試料空間の二,三の例/p70
14. 空間[数式]/p79
15. 一般関数[数式]の構造/p87
16. 超関数∈D′(Ω)の構造/p95
17. 一般関数のFourier変換/p110
18. 定数係数偏微分作用素の素解/p120
19. S型空間/p130
20. S型空間のFourier変換/p143
21. 定数係数線形偏微分方程式のCauchy問題/p148
付録
解答/p177
803:132人目の素数さん
23/02/23 11:33:14.09 03KDcN8J.net
>>723-724
落ちこぼれのサルが喚くw スレリンク(math板:5番)
> 自分の平成サラリーマン人生の中で
> どれほどの数学と物理が必要だった?
> 高校レベルで十分だっただろ?
そりゃ、あんたの地位が低いだけよw
理系の文献で、数学が皆無とか高校で間に合うとかは少数です
文系でも、経済学では、高校レベルじゃね(下記)
https://
804:ja.wikipedia.org/wiki/%E6%A4%8D%E7%94%B0%E5%92%8C%E7%94%B7 植田 和男(1951年9月20日 - ) 人物・経歴 東京大学理学部、同大学経済学部卒業。東大経済学部在学中は宇沢弘文(数理経済学)、小宮隆太郎(国際金融論)、浜田宏一(国際金融論)の下で学ぶ[3]。 https://ja.wikipedia.org/wiki/%E5%AE%87%E6%B2%A2%E5%BC%98%E6%96%87 宇沢(宇澤) 弘文(う1928年(昭和3年)7月21日 - 2014年(平成26年)9月18日[4])は、日本の経済学者。専門は数理経済学。意思決定理論、二部門成長モデル、不均衡動学理論などで功績を認められた。シカゴ大学ではジョセフ・E・スティグリッツを指導した[3]。 学生時代 1951年に東京大学理学部数学科を卒業し、数学科の特別研究生となった[9]。彌永昌吉に数論を、末綱恕一に数学基礎論を学んだが、経済・社会問題への関心から経済学に転じる https://ja.wikipedia.org/wiki/%E3%82%B8%E3%83%A7%E3%83%B3%E3%83%BB%E3%83%8A%E3%83%83%E3%82%B7%E3%83%A5 ジョン・ナッシュ ジョン・フォーブス・ナッシュ・ジュニア(John Forbes Nash Jr. 1928年6月13日 - 2015年5月23日[1])は、アメリカ人の数学者。ゲーム理論、微分幾何学、偏微分方程式で著名な業績を残す。1994年にゲーム理論の経済学への応用に関する貢献によりラインハルト・ゼルテン、ジョン・ハーサニと共にノーベル経済学賞を、2015年に非線形偏微分方程式論とその幾何解析への応用に関する貢献によりルイス・ニーレンバーグと共にアーベル賞を受賞した。 微分幾何学では、リーマン多様体の研究に関して大きな功績を残す。 つづく
805:132人目の素数さん
23/02/23 11:33:44.88 03KDcN8J.net
>>727
つづき
1959年から統合失調症を患うようになり、1960年代には精神病院に通いながら研究を続ける。1970年ごろから寛解に向かい、1990年代には症状が出なくなったとされる。
URLリンク(ja.wikipedia.org)
亀澤 宏規(かめざわ ひろのり、1961年〈昭和36年〉11月18日 - )は、日本の実業家。株式会社三菱UFJフィナンシャル・グループ取締役代表執行役社長兼グループCEO。宮崎県出身[1]。
経歴
宮崎県立宮崎西高等学校、東京大学理学部数学科卒業[2]、東京大学大学院理学系研究科を修了した後、1986年に三菱銀行(現・三菱UFJ銀行)に入行。
URLリンク(ja.wikipedia.org)
ブラック?ショールズ方程式
ブラック?ショールズ方程式(ブラック?ショールズほうていしき、英: Black?Scholes equation)とは、デリバティブの価格づけに現れる偏微分方程式(およびその境界値問題)のことである。
URLリンク(ja.wikipedia.org)
伊藤 清(1915年〈大正4年〉9月7日[1] - 2008年〈平成20年〉11月10日)は、日本の数学者、大蔵官僚。
数学者である伊藤清三は弟[3]。
ファイナンス分野への貢献
デリバティブの一種であるオプションの価格評価式であるブラック?ショールズ方程式の導出もまた、伊藤の定理が基礎となっており、同方程式の考案者としてノーベル経済学賞を受賞したマイロン・ショールズは伊藤に会った際にわざわざ握手を求め、伊藤の定理に敬意を表した。伊藤自身は経済学に無関心で、ある経済学者の集まりに出席した際にあまりの歓迎ぶりに当惑し、そもそもそんな定理を導いた記憶はないと言い張ったという[8]。
(引用終り)
以上
806:132人目の素数さん
23/02/23 13:43:26.44 03KDcN8J.net
>>710
そういえば、猪瀬博司氏と1969年入学同学年で
森重文氏が居たのを思い出した
URLリンク(ja.wikipedia.org)
森重文(1951年〈昭和26年〉2月23日[1] - )は、日本の数学者(代数幾何学)。勲等は文化勲章。学位は、理学博士(京都大学・1978年)(学位論文『The endomorphism rings of some abelian varieties〈幾つかのアーベル多様体の自己準同型環〉』)。
概要
愛知県名古屋市出身の数学者である。代数幾何学における双有理幾何学を専攻する。代数幾何学での業績により、1990年にフィールズ賞を受賞した。
研究
「接束が豊富なら射影空間である」というハーツホーンの予想を解決した論文[5]は、代数多様体の構造論における最初の一般的な定理として歴史に刻まれるものであり、
極小モデルの存在を3次元の場合に示すことに成功し、1990年に京都で開かれた国際数学者会議でフィールズ賞を受けた。
人物
日本を震撼させた東大安田講堂攻防戦の直後となった1969年の東京大学入学試験は、当時の佐藤内閣政治的判断と行政指導により中止されてしまった。このため森は仕方なく京都大学に進んだ[1]。フィールズ賞を受賞した時、『科学朝日』誌は「あのとき東大に進んでいたらフィールズ賞受賞はなかっただろう」とこれを報じている。
高校の時に大学の内容を進んで学んでいたりはしていなかった。大学での数学に触れたのは大学に入ってからである[1]。
広中平祐は「自分は鈍才だが、森君は天才」という[8]。
学生時代、指導教授からある数学書を薦められると1~2ヶ月ほどで「読みました」と戻って来てしまい、次の数学書を薦められてはまた同じことを繰り返した。「数学書を読むのが異常に速い」学生として強烈な印象を与えていたという。
URLリンク(mathsoc.jp)
向井茂「森重文氏の業績」『数学』第43巻第1号、1991年、40-47頁
URLリンク(mathsoc.jp)
隅広秀康「森重文氏」『数学』第43巻第1号、1991年、47-50頁
807:132人目の素数さん
23/02/23 13:56:37.49 03KDcN8J.net
>>636 補足
遠山啓の「数学入門」で、
一番まずいのは、古いってこと
上が刊行日 1959/11/17、
下が刊行日 1960/10/20
でしょ?
かれこれ、60年以上前
時代が違うでしょ?
>>374より
”かつて, 横田一郎先生がご存命だったときに,
よく「ずるく勉強せなあかん」 とおっしゃられていました。
「最短距離で最先端」という意味は,
この横田先生の言葉がよく表しています”
1960年当時、社会で必要とされる数学と
2023年の今、社会で必要とされる数学と
かなり違うと思うけどね
それが反映されていない入門書って
まずいよね
808:132人目の素数さん
23/02/23 15:59:10.01 03KDcN8J.net
>>730 補足
1)1960年当時といえば、電卓は無いけど、
ソロバン全盛で、日本民族の数値計算能力のレベルは高かったんだ
2)ところが、世界的にエクセルとか表計算が普及して
いつのころからか「日本人は計算に弱い」と言われるようになったそうな
その意味は、エクセルとか表計算などを使いこなしていないからという
3)三角関数の加法定理なんかやめて、エクセル使えば良い(複素関数のオイラーの公式を教えれば代用できるし)
加法定理は教えて良いけど、試験に出す必要ない
4)フーリエ変換も、いまは数値計算ソフトがいろいろあって
ソフト組み込みの機械が普通でしょ(例 FT-IR Fourier-transform infrared spectroscopy (FTIR) URLリンク(en.wikipedia.org))
(先端の科学でも、相対性理論の重力波の計算、素粒子物理の計算、量子力学の高分子の計算、全部専用ソフトがある)
5)数学も、数学ソフト(数式処理とか群論とか)使用を前提にした、教授法を考えないとね
6)だから、数学入門書もソフト使用前提の入門書であるべきと思うよ
(例えば下記で、行列計算だって、エクセルにあるよ。複素数関数もある)
(参考)
URLリンク(bellcurve.jp)
Excel関数による行列の転置・積・逆行列・行列式の計算方法 2017/12/20
URLリンク(godfoot.world.coocan.jp)
エクセルを用いた虚数、複素数計算 (有)ゴッドフット企画
URLリンク(godfoot.world.coocan.jp)
Excelを用いた科学技術計算
科学技術計算の90%はExcelで対応できる!
(基本公式・関数・ソルバー・VBA・グラフを用いて)
809:132人目の素数さん
23/02/23 16:23:21.79 AUdAUAqL.net
百万人の数学 上 単行本 – 2015/12/18
ランスロット・ホグベン (著), 久村 典子 (翻訳)
ホグベンの本の「特徴」は
「具体的」「実学的」であることです。
数学書あるいは数学入門書の多くは
専門の数学者が数学専攻者のために
数学書のスタイルで書くことが多いです。
そして数学者のほぼ100%は
プラトン主義者です。
簡単に言うと
数学者は数学を実学とは思っていません。
ことに現代数学は抽象化が進んでおりますので
公理によって規定されている
数学的対象(数学的構造)に対して
一段一段理解して行くしかありません。
伝統的に英国の数学は
例えば大陸の数学に比べると
抽象的一般論よりは
具体例を重視する傾向があった
ようにも感じます。
ホグベンの本はそのきわめて卑近な
典型例と言うことができるでしょう。
続く
810:132人目の素数さん
23/02/23 16:25:16.30 AUdAUAqL.net
もちろん
数学のユーザーの中にはいろいろな人が
いますので
実学重視した数学入門書があってもいいと
思います。
そう考えたホグベンは日常生活に例を求め
マイル・ヤードなど
英国人にとっては身近な単位を用いて
数学的事実を記載しました。
それは英国においては有意義ですが
それをそのままヨコのものをタテにするだけでは
日本人には何の実感も生まれない
従って実学的効果もない
ということになります。
ホグベンの原著につきましては
数学入門書として良い点もあれば
至らない点もあります。
総じて悪い本ではありません。
しかし絶賛という本でもありません。
続く
811:132人目の素数さん
23/02/23 16:25:56.73 AUdAUAqL.net
コンピュータなどの進歩という
時代背景はあるかもしれませんが
数学書はそういうことは
気にしなくていいと思います。
時代や空間に左右されることなく
数学が持っている基本的な精神
(
812:マインド・エスプリ・センス) などを記述することが特に 入門書にとっては肝要かと思います。 その点 本書(つまり新訳)は上述の通り 何の工夫もなく 単にヨコのものをタテに直しただけ という印象です。 むしろ今野武雄訳をそのまま 再出版していただいた方が 有益であったように思います。
813:132人目の素数さん
23/02/23 19:30:37.40 03KDcN8J.net
>>732
>百万人の数学 上 単行本 - 2015/12/18
>ランスロット・ホグベン (著), 久村 典子 (翻訳)
ありがとう
昔何かで題名だけ見た気がする(新聞抗広告だったか、図書館だったか、多分複数回)
引用のホグベンのレビュー Enriques_Castelnuovo が二つあって
1日違いで正反対みたい
久村 典子 訳に、ダメだしか
URLリンク(www.)<)アマゾン
百万人の数学〈上〉 (1969年) (筑摩叢書) Tankobon Hardcover
by L.ホグベン (著), 今野 武雄 (翻訳)
レビュー
Enriques_Castelnuovo
4.0 out of 5 stars フィールズ賞のマンフォードも称賛
Reviewed in Japan on July 21, 2019
フィールズ賞(1974)受賞者である
英国生まれの米国の数学者
デーヴィッド・マンフォード氏
(1937ー)が
ホグベン『百万人の数学』に対し
賛辞(tribute)を述べている由です。
つづく
814:132人目の素数さん
23/02/23 19:31:08.23 03KDcN8J.net
>>735
つづき
URLリンク(ja.wikipedia.org)
ランスロット・ホグベン
ランスロット・トマス・ホグベン (1895年12月9日 - 1975年8月22日)は、イギリスの動物学者、遺伝学者。
『百万人の数学』『市民の科学』をはじめ、科学・数学・言語の啓蒙書の執筆者としてよく知られる。マルクス主義者でもあり独立労働党でも活動、人工言語・インターグロッサ(英語版)の考案者である。妻は、数学者・統計学者でフェミニストのエニッド・チャールズ(英語版)。
ホグベンは『百万人の数学』(1936年)、『市民の科学』(1938年)と一般向けの科学のベストセラーを2冊出版した。これらはとても野心的な書籍であった。
URLリンク(en.wikipedia.org)
Lancelot Thomas Hogben FRS[1] FRSE (9 December 1895 ? 22 August 1975)
British experimental zoologist and medical statistician.
Popular science writing
Hogben produced two best-selling works of popular science, Mathematics for the Million (1936) and Science for the Citizen (1938). Mathematics for the Million received widespread praise, with H. G. Wells saying that "Mathematics for the Million is a great book, a book of first-class importance".[20] The book was also lauded by Albert Einstein, Bertrand Russell and Julian Huxley.[20][21]Mathematics for the Million was reprinted after Hogben's death.[21]
References
21 "Mathematics for the Million...praised by Einstein, H. G. Wells and others, it was reprinted in paperback in 1993." De Smith, Michael John, Maths for the Mystified : An Exploration of the History of Mathematics and Its Relationship to Modern-Day Science and Computing.Leicester : Matador, 2006. (p.192)
(引用終り)
以上
815:132人目の素数さん
23/02/23 19:42:57.40 03KDcN8J.net
>>735 補足
百万人の~ というのは、キラーフレーズかも
いろん本あった気がするな
https://アマゾン
原子の内幕―百万人の核物理学入門 (1966年) Tankobon Hardcover ? Antique Books, July 1, 1966
by アイザック・アシモフ (著), 佐々木 宗雄 (解説, 翻訳)
https://アマゾン
百万人の化学史―「原子」神話から実体へ Tankobon Hardcover ? November 1, 1989
by 筏 英之 (著)
URLリンク(ja.wikipedia.org)
百万人の英語
816:132人目の素数さん
23/02/23 19:54:30.70 03KDcN8J.net
>>732
>そして数学者のほぼ100%は
>プラトン主義者です。
>簡単に言うと
>数学者は数学を実学とは思っていません。
>ことに現代数学は抽象化が進んでおりますので
>公理によって規定されている
>数学的対象(数学的構造)に対して
>一段一段理解して行くしかありません。
プラトン主義? なんだっけw
これか?
URLリンク(ja.wikipedia.org)
プラトニズム(英語:Platonism)またはプラトン主義とはプラトンの哲学またはプラトンの哲学に強く由来する哲学体系を指して言われる。狭義ではプラトンの実在論の教理を指して言われる。プラトニズムの中心的な構想は、知覚の対象であるが思惟の対象でない実在と思惟の対象であるが知覚の対象でない実在の区別である。この区別をするうえでイデア論は不可欠である。イデアは「パイドン」、「饗宴」、「国家」といった対話篇で、超絶した、完璧な原型として描かれている。日常的世界に存在するものはイデアの不完全なコピーにすぎないとされる。
概要
プラトニズムの基本的な構想はイデア論である。唯一の真なる存在はイデア、つまり普遍にして完全な範型であり、知覚の対象となる個々の物はイデアの不完全な模造であるとされる。知覚の対象は大抵絶え間ない変化に巻き込まれ、そのために本当の存在を奪われる[1]。それぞれの数のイデアは個々の知覚の対象に由来しうる普遍的な構想としての数によって定義される[1]。
URLリンク(en.wikipedia.org)
Platonism
Platonism is the philosophy of Plato and philosophical systems closely derived from it, though contemporary platonists do not necessarily accept all doctrines of Plato.[1]
Philosophy
The primary concept is the Theory of Forms. The only true being is founded upon the forms, the eternal, unchangeable, perfect types, of which particular objects of moral and responsible sense are imperfect copies.
817:132人目の素数さん
23/02/23 20:10:37.29 03KDcN8J.net
>>738
>ことに現代数学は抽象化が進んでおりますので
>公理によって規定されている
>数学的対象(数学的構造)に対して
>一段一段理解して行くしかありません。
補足
1)一見ごもっともなれど、
他者に作られたら数学を理解するには上記としても
自分が数学理論を作るときは
試行錯誤やヒラメキが必要だったりすると思う
あるいは、何か天啓に似た直観に導かれ、新しい理論ができたり
2)あと、圏論が出て、
”一段一段”よりも
”矢印(やじるし)”主義みたいなw
要するに、文字で書くと10ステップ必要な内容を
圏の”矢印(やじるし)”では1行で一目です
昔は
数学は、一段一段
数学�
818:ノ王道なし! 今は 横田一郎先生:「ずるく勉強せなあかん」、「最短距離で最先端」 私は、横田一郎先生に一票です!
819:132人目の素数さん
23/02/23 21:14:17.37 fP7IBK5f.net
志村先生の「記憶の切絵図」の一節
・・・ホグベンの方は、当たり前のことばかりで、
も少し読んだら何か面白いことがあるかと
期待して読み進めたが、終わりまで行っても
結局何もなかったのでがっかりしたのであった。
私は結局は数学者になった人間だから、そんな本を読んだ
こちらが悪いとも言える。しかし
一般向けの本としても人にすすめる気にはなれない。
820:132人目の素数さん
23/02/23 22:23:26.53 MhPLAiFD.net
ピントはずれ
821:132人目の素数さん
23/02/23 22:47:26.58 fP7IBK5f.net
ホグベンの本に対して
マンフォードと志村が反対の評価をしているのが
興味深い
822:132人目の素数さん
23/02/24 11:59:13.77 uvW2SKpZ.net
>>739 補足
>昔は
>数学は、一段一段
>数学に王道なし!
>今は
>横田一郎先生:「ずるく勉強せなあかん」、「最短距離で最先端」
>私は、横田一郎先生に一票です!
1)最短距離で最先端:例えば相互律>>484 約20種
英 Reciprocity、物理 相反定理と同様に”二つのものを入れ替えても同等”
そういうことを知った上で、平方剰余の相互法則を学べば、単純な一段一段よりも効率的と思う
約20種の相互律をいくつかのグループに分けられるとすれば(しらんけど)
平方剰余の属するグループに共通の原理を学べば、そのグループ全体について理解できるし
より深い理解に繋がる
平方剰余→類体論に繋がる道筋も見えるかも
2)あと、”一段一段”がハマリになるときがある
例えば、定理A,B,C,D→Eとあって、これで4つの定理A,B,C,Dから大定理Eが出るとする
定理Aだけ見ても意味が分からない
定理Bとの繋がりもない
だけど、大定理Eまで行って初めて、定理Aの意味分かる
”一段一段”でなく、一回全部通して読む必要があるってこと
3)聞ける人(教師や先輩)がいれば、聞くこと
聞くための作法があって、自分なりに何が分からないかを整理すること
そして、”自分はこう考えるがどうか?”くらいまで煮詰めて聞く
聞くことも勉強法の一つ
4)良い勉強仲間を持つ
お互い情報交換して、教え合う
実は、教える(先生役)が一番勉強になり、記憶に残る
(ゼミの一つの狙いはこれ)
横田一郎先生:「ずるく勉強せなあかん」、「最短距離で最先端」
私は、横田一郎先生に一票です!
823:132人目の素数さん
23/02/24 12:05:24.24 TNhcTVUn.net
>「ずるく勉強せなあかん」、「最短距離で最先端」
10年かけてガロア理論さえモノにならなかったあなたが
言うのはギャグですか?それとも反面教師?
824:132人目の素数さん
23/02/24 12:52:04.26 2O882XG7.net
受験対応必死でやったあげく阪大ぐらいしか紛れ込めなかった手合いが
この世でいちばん地頭が見劣りする。
825:132人目の素数さん
23/02/24 13:45:00.06 uvW2SKpZ.net
>>744-745
ご苦労さん
それ、自分に跳ね返っていることに気付かないか?
下記、【名言】アンドリュー・カーネギー「己より賢き者を近づける術知りたる者、ここに眠る」
1人で全部やる必要ないんだよね、大学終わったら
佐藤幹夫先生:弟子の柏原正樹、河合隆裕氏らが来てから、自分では論文を書かなかったようだ
むしろ、尊師として、議論の相手やアイデアマン役だったか(下記)
まぜっかえしを、承知で書くと
1)「地頭が見劣り」とか、それ厳密な定義なく、よって計測も不能な用語を持ち出して、何が言いたい?
2)「10年かけてガロア理論」も同じ。あんた自分のバカ頭が、世間一般の尺度になるかね?w
以上
(参考:裏付けがとれなかったので、都市伝説かも)
URLリンク(sasaki193.seesaa.net)
(有)佐々木石材工業
2015年07月12日
【名言】アンドリュー・カーネギーの墓碑に刻まれた文章
アンドリュー・カーネギーの墓碑に刻まれた文章はこちら
【己より賢き者を近づける術知りたる者、ここに眠る。】
【Here lies one who knew how to get around him men who were cleverer than himself.】
URLリンク(ja.wikipedia.org)(%E6%95%B0%E5%AD%A6%E8%80%85)
佐藤 幹夫(さとう みきお、男性、1928年4月18日 - 2023年1月9日[1])
一時期高校教師[3]を務めるなど異色の経歴を持つ。ノーベル物理学賞受賞の物理学者朝永振一郎に学んだこともある。
弟子には柏原正樹、河合隆裕、三輪哲二、神保道夫らがいる。1992年退官。
826:132人目の素数さん
23/02/24 15:16:10.03 TNhcTVUn.net
「セタ」は「自尊心」という無駄な機能を備えた
コピペボットだという説があります
827:132人目の素数さん
23/02/24 16:46:36.42 tJUxv2t4.net
高校の教師といっても、旧学制度の高校って、大学の教養課程並のレベルじゃ
なかった? 昔の旧制高校は課程が5年間あったんだろ?
828:132人目の素数さん
23/02/24 17:06:21.64 uvW2SKpZ.net
>>747
おサルさん 35年前 某数学科のオチコボレという説がありますwww スレリンク(math板:5番)
>>748
>高校の教師といっても、旧学制度の高校って、大学の教養課程並のレベルじゃ
>なかった? 昔の旧制高校は課程が5年間あったんだろ?
詳しくないが、下記などを
URLリンク(ja.wikipedia.org)
旧制高等学校(きゅうせいこうとうがっこう)は、明治時代から昭和時代前期にかけての日本に存在した高等教育機関。存続時期のほとんどにおいて、帝国大学を中心とする官公立の旧制大学学部への進学のための予備教育(現在の大学教養課程に相当)を、男子のみに対して行った。
旧制高等学校は、中学校令(1886年)に基づく官立高等中学校が高等学校令(1894年)により改組されて発足した。当初は、尋常中学校卒業程度の者を対象に専門教育を行う学部(4年制)と帝国大学進学のための予備教育を施す大学予科(3年制)の2部門で構成されたが、やがて前者を分離・廃止して後者のみからなる3年制の機関へ変化した。
1918年の改正高等学校令では「男子の高等普通教育を完成する機関」と定義され、尋常小学校卒業程度の者を対象とする尋常科(4年制)と中学校4年修了程度を対象とする高等科(3年制)を備えた7年制高等学校が創出され、設置条件が緩和されたことで学校数も増加した。在籍者は帝国大学への進学を保証されたため、旧制高等学校は戦前の日本社会ではエリート層の揺籃の場として認識され、当時の社会制度の根底を支える役割も果たしたが、太平洋戦争下で修業年限短縮などの統制を経て、戦後の連合国軍占領下にて民主化政策の一環として実施された学制改革により、学校教育法に基づく大学(新制大学)へ統合・継承される形で1950年に廃止された。
829:132人目の素数さん
23/02/24 17:34:24.75 h6JjRJRL.net
>>743
>「ずるく勉強せなあかん」
コピペは勉強に非ず
読んでも理解できないとまた検索
何
830:も勉めず何も強いず その結果 何も読めず何も分からず >「最短距離で最先端」 上り坂を避け続けた結果 山頂をぐるぐる回るだけ 決して山頂に辿り着けず 数学科卒は一気に坂を上り 上から1のベキ根の巨石を転げ落として 怠惰なコピペ耄碌爺をペシャンコにつぶした 10年ラグランジュ分解式と喚いても何も分からず 耄碌爺の人生は高校卒業以後全くの無駄
831:132人目の素数さん
23/02/24 20:50:59.94 9XII1Ge4.net
NGワード?
832:132人目の素数さん
23/02/24 20:53:03.15 9XII1Ge4.net
>>662
>・そもそも行列式は、何を表しているのか?
良い質問ですねww by Ikegami
昔、大学初年度の講義で教授が「行列と行列式は別もので、行列式の方が先に考えられた・・ ウンヌン」と言っていたのを覚えている
(いまどきは、常識かも)
検索すると下記ですね。和算 関孝和 えらい! って話かw
(参考)
URL あとで
東海大学紀要情報通信学部
Vol.12,No.1,2019,pp.53-62
大学初年次における数学教材の提案(その 27)
~行列式の起源~
貴田 研司 東海大学
あらまし
二元一次連立方程式の解法を一般の連立一次方程式の解法に拡張することによって,行列式の概念が自然に出来上
がる様子を示すことを目標とする
行列式の起源は連立一次方程式の一般的解法にある.西洋の数学史において行列式はLeibnizの書簡(1678
年)の中にある記載を初出としているが,その書簡が発見されたのは後年になってのことである.その後Cramer
が曲線論に関する著書(1750年)において任意の数の未知数を含む連立一次方程式の解法を示してから,ようや
く学界に注目され始め,後にCauchy(1815年),Jacobi(1841年)に至って,現在の行列式論の基礎が出来たの
である.
行列式論を説明するに当たって,行列式を既に出来上がったものとして
略
というように,突然にその定義が述べられることが多いかと思う.しかしこれはあまりにも奇異な感を与えてし
まうのではという懸念を拭い去ることができない.
このような述べ方をせずに,寧ろLeibnizやCramerの立場に帰って,どのようにして連立一次方程式の解法か
ら,行列式なるものが自然に出て来たのかを説明しようとするものである.
つづく
833:132人目の素数さん
23/02/24 20:55:12.76 9XII1Ge4.net
つづき
https:
//www.u-tokai.ac.jp/
uploads/
sites/
12/2021/03/PP53-62.pdf
つづく
834:132人目の素数さん
23/02/24 20:55:57.33 9XII1Ge4.net
>>752
つづき
URLリンク(www2.nao.ac.jp)
国立天文台 (NAOJ)
ここは 相馬 充 (Mitsuru SOMA) のホームページです
URLリンク(www2.nao.ac.jp)
「第7回天文学史研究会」 2019年
URLリンク(www2.nao.ac.jp)
「関・サリュースの公式について」藤野清次 (九州大学名誉教授)2019
第 1 節 はじめに:
Sarrus (通称サラス)の公式は 3 次の行列式
(determinant)の展開式はよく知られた初等的
な公式である.Sarrus はフランス人なので,以
下ではサリュまたはサリュースと呼ぶ.
我が国の初見は 1683 年の関孝和の「解伏題
之法」とされる.一方,西洋でのそれは G.W.
Leibniz から L’Hospital への 1693 年の書簡と
される.前者ではその後符号の訂正の指摘が
されたり,後者では 1850 年までその発見事実
が公に知られていなかった.したがって,学会
や他の研究への影響などは非常に限定的で
あったと思われる.本報告では行列式に関す
る 3 人の話題を取り上げることにする.
つづく
835:132人目の素数さん
23/02/24 20:57:14.04 9XII1Ge4.net
>>754
つづき
1 はじめに
この講義では行列式 (determinant) について概説し, あわせて和算ついて
紹介する. 和算とは, 江戸時代に日本で発展した日本固有の数学である. 当時
の日本は鎖国していて海外との学問的交流はほとんどなく, 和算は西洋の数
学とは独立に発展してきた. しかし明治維新とともに学校教育などに西洋の
数学“洋算”が採用され, 和算はおとろえていった. ただし珠算1だけはその後
も伝えられ実際に役立っている.
さて, 行列式は現代数学においても重要な概念である. 行列式は日本で江戸
時代に発見されたけれども当時は海外に知られることなく, のちにヨーロッ
パでもまた日本とは独立に発見されたものである. 現在では行列式は線型代
数学の中で行列 (matrix) などとともに学ぶのが一般的であるけれども, ここ
では行列や一次変換にはほとんどふれず行列式だけに話を限定する. なお, 用
語や記法は, 江戸時代のものでなく現代のものをもちいる. つまり, ここでも
ちいる数式の書き方は欧米と共通のもの, また用語の多くは明治時代に西洋
の数学を取りいれたときに作られたものである.
行列式の歴史について. 前述のとおり行列式の理論は日本とヨーロッパとで
独立に発見されている. まず, 関孝和2が方程式論の研究の中で高次連立方程
式の消去法の考察から行列式を発見し, その理論を“解伏題之法” (1683年) に
述べている. 行列式の計算の図解は 1992年発行の関孝和生誕 350年記念切手
に, 関の肖像画の背景に描かれている. 関孝和が発見して図解したのと同じ三
次行列式の計算法はヨーロッパではサリュー3の発見といわれ, 書物に発表さ
れたのは 1846年が最初である.
(引用終り)
以上
836:132人目の素数さん
23/02/24 21:03:25.97 9XII1Ge4.net
>>753
URLが通らない
もし、これが通れば
下記の東海大学のトップページからの検索も可能ですが
URLリンク(www.u-tokai.ac.jp)
東海大学
東海大学紀要
情報通信学部
Vol.12 No.1 2019
目次
論文
初年次で学ぶ線形代数の卒業研究準備段階における学び直しの例
?クラーメルの公式とその電気回路への応用?
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・貴田研司・福原雅朗…… 1
地図アプリケーションを利用した際の「歩きスマホ」を低減するための改良アプリケーションの提案
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・上山智紀・辛島光彦…… 26
反応拡散方程式を用いた東京近郊における待機児童数の予測モデル
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・横塚 桃・田畑智章…… 35
実物不動産に対する投資リターンの推定
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・伊尻 萌・田畑智章…… 43
トピックス
地域・キャンパス・学生・教職員間連携交流活動の報告
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・北濱幹士…… 49 ←
大学初年次における数学教材の提案(その27)?行列式の起源?
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・貴田研司…… 53
大学初年次における数学教材の提案(その28)?行列のかけ算の起源?
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・貴田研司…… 63
837:132人目の素数さん
23/02/24 23:08:04.88 9XII1Ge4.net
>>756
>大学初年次における数学教材の提案(その28)?行列のかけ算の起源?
ついでに
https:
//www.u-tokai.ac.jp/uploads/sites/12/2021/03/PP63-70.pdf
東海大学紀要情報通信学部
Vol.12,No.1,2019,pp.63-70
大学初年次における数学教材の提案(その 28)
~行列のかけ算の起源~
貴田 研司
1. はじめに
大学初年次で学ぶ線形代数の
838:講義においては,行列のかけ算の定義は唐突に述べられることが多いと思われる が,その起源について述べることとしたい.まずは??????個の変数に対する一次変換(これは,??????次の正方行列で表 される)の合成に基づく定義から始める.そして,行列のかけ算と行列式の関係についての詳細な解説をした い.この論文における解説には,髙木貞治「代数学講義改訂新版」1)を大いに参考にした. この解説で鍵となるところのn個の変数 略 の同次一次式とは 略 の形の式のことをいう. 2. 行列のかけ算 行列のかけ算の起源は一次変換の合成にある.
839:132人目の素数さん
23/02/24 23:19:30.39 9XII1Ge4.net
いいね
面白い
URLリンク(www.youtube.com)
【行列と行列式の歴史】ベクトルと線型代数の難易度の謎 グラスマン ガウス デカルト ブルバキ
MT 数学・数学史
2020/09/06
Kenji Hiranabe
1 年前
この回、すごく面白かったです。ブルバキの話がここで出てくるとは!
OGURA Sei
2 年前
イケメン発見!
お話も上手で楽しく拝見させていただきました!
840:132人目の素数さん
23/02/24 23:34:48.87 9XII1Ge4.net
これ、良く纏まっているね
「1851年の論文でシルベスターは
>I have in previous papers defined a "Matrix" as a rectangular array of terms, out of which different systems of determinants may be engendered as from the womb of a common parent.
>(以前の論文で、項を矩形状に並べた配列として定義した "Matrix" は、そのうちで異なる行列式の体系を生み出す共通の親としての母体である。)
と説明している」
なるほどね
URLリンク(scrapbox.io)
miyamonz
行列の歴史
[抽象代数の歴史] p50より URLリンク(scrapbox.io) #Iクライナー 著 #斎藤正彦 翻訳
1855, 1858の二つの論文で、[ケイリー]は正方行列を導入
用語 "matrix"(ラテン語で「生み出すもの」の意味の語 "womb" に由来)は[シルベスター]が導入した。
シルベスターは行列を、(今日小行列式と呼ばれる)もとの行列から一部の行や列を取り除いて得られる小行列の行列式として、たくさんの行列式を生じるものとして理解していた。
1851年の論文でシルベスターは
>I have in previous papers defined a "Matrix" as a rectangular array of terms, out of which different systems of determinants may be engendered as from the womb of a common parent.
>(以前の論文で、項を矩形状に並べた配列として定義した "Matrix" は、そのうちで異なる行列式の体系を生み出す共通の親としての母体である。)
と説明している。
841:132人目の素数さん
23/02/25 07:31:38.97 Bp7ZbkYv.net
>>750-759
あんた
「いいね 面白い」
「よく纏まってるね」
「なるほどね」
と分かった風なこと書いてるけど
行列の掛け算 できるのかい?
842:132人目の素数さん
23/02/25 08:12:02.93 ZowC59iz.net
>>759 補足
>シルベスターは行列を、(今日小行列式と呼ばれる)もとの行列から一部の行や列を取り除いて得られる小行列の行列式として、たくさんの行列式を生じるものとして理解していた。
下記ですね
「小行列式」「余因子展開」など
歴史もある。結構詳しい
URLリンク(ja.wikipedia.org)
行列式
行列式(determinant)とは、正方行列に対して定義される量で、歴史的には行列が表す一次方程式の可解性を判定する指標として導入された。
幾何的には線型空間またはより一般の有限生成自由加群上の自己準同型に対して定義され、線型変換に対して線形空間の拡大率ということができる。行列の可逆性を判定する指標として線型代数学における最も重要な指標の一つと見なされている。
URLリンク(upload.wikimedia.org)
この平行六面体の体積はベクトル r1, r2, r3 の成す 3 次正方行列の行列式の絶対値に一致する。
歴史
現代的な行列式の概念の確立
現代的な意味での行列式という用語はコーシーによって初めて導入された[4]。彼はそれまでに得られていた知識を統合し、1812年には積と行列式の関係を発表している(同じ年にビネも独立に証明をあたえていた)。コーシーは平行して準同型の簡約化についての基礎付けの研究も行っている。
発展的な話題
小行列式
詳細は「小行列式」を参照
余因子展開
詳細は「余因子展開」を参照
余因子行列と逆行列
A の行列式 det(A) が 0 でない場合には
略
1/det(A) *A~
は A の逆行列 A?1 に一致する(クラメルの公式)
なお、余因子行列としてここでの余因子行列の転置行列、すなわち (i, j)余因子を (i, j)成分に持つ行列 を採用する流儀もあるので、単に「余因子行列」といったときにはどちらの流儀であるか注意が必要である。
(引用終り)
843:132人目の素数さん
23/02/25 08:20:09.46 Bp7ZbkYv.net
>>761
検索コピペはできても行列の積は計算できず
全然勉強できてませんなあ
844:132人目の素数さん
23/02/25 08:31:37.96 ZowC59iz.net
>>760
>行列の掛け算 できるのかい?
ホイよ
分かった風なこと言っているけど
いまどき実務で扱う行列は
3x3程度じゃ納まらないよね
3x3程度なら、手計算だろうが
(3x3のクラメールは中学でやったが)
もっと大きくなると、下記のようなソフトがあるよ
URLリンク(bellcurve.jp)
BellCurve
Excel関数による行列の転置・積・逆行列・行列式の計算方法
2017/12/20
URLリンク(www3.cuc.ac.jp)
千葉商科大学 第1回 ガイダンス 2016
高校数学の復習
1.行列の計算―売上金額の計算
Excelを用いた行列の積の計算
URLリンク(www3.cuc.ac.jp)
千葉商科大学
Excelを用いた行列の積の計算
このページでは,Excel関数を使って行列の積を計算する手順について解説する.
手順
1.行列Aおよび行列Bの係数を入力する.
2.MMULT関数を用いて計算する.
URLリンク(www3.cuc.ac.jp)
千葉商科大学 商経学部 情報コース(永岡)
URLリンク(www3.cuc.ac.jp)
応用情報処理 2016
845:132人目の素数さん
23/02/25 08:41:54.48 6s04KzyG.net
>>762
みんな君の方が異常だと気付いている
846:132人目の素数さん
23/02/25 08:56:24.46 ZowC59iz.net
>>763 補足
>>709より 金子晃氏が、有限要素法による偏微分方程式の解法の広義をしている
有限要素法で扱う行列は、いまどきは軽く数万x数万を超えるんじゃない?
(例えば、3Dで各100分割なら100^3=100万になる)
手計算やったら、何十年でも 終わらんぞ!www
このクラスになると、エクセルではなく、専用ソフト使うけど
だからさ、数学科で落ちこぼれたアホは、世間を知らない
金子晃氏は、世間を知っている
URLリンク(www.kanenko.com)
ようこそ, アレクセイカーネンコ応用数理研究室へ!
Welcome to Alexei KANENKO's Web Site! (金子晃)
URLリンク(www.kanenko.com)
平成9年度(1997)の開講講義
応用微分方程式論(大学院・前期) 有限要素法の入門講義をしました.
URLリンク(www.kanenko.com)
応用微分方程式論(大学院・前期)(1997)
本講義は微分方程式の実用的側面を毎年テーマを選んで解説するものであり, 本年度のテーマは有限要素法とする.
有限要素法とは,一言でいえば領域を三角形など簡単な形状を持った要素に分割して, �
847:謨ェ一次函数などの初等的な基底を用いた線型代数の計算で,難しい偏微分方程式の 問題をすいすい解いてしまおうというものである. 本講義ではおおむね C. Johnson 著 『Numerical solution of partial differential equations by the finite element method』(Cambridge University Press) に基づき, この理論の基礎的部分を解説する. だいたい同書の第7章くらいまでを目標とし, 楕円型の境界値問題については ほぼ一通りの知識を得ることを目指す. これに実際のプログラミングの解説を補って実習もしてもらう予定である. 第12回(7月9日):補間誤差と有限要素法の解の誤差評価の話を終え, 巨大行列の解法に入った.
848:132人目の素数さん
23/02/25 08:58:03.76 ZowC59iz.net
>>764
ホイよ
>>765より
"だからさ、数学科で落ちこぼれたアホは、世間を知らない
金子晃氏は、世間を知っている"
849:132人目の素数さん
23/02/25 09:42:01.09 ZowC59iz.net
>>765
追加
下記などを
2013年の「京」100万×100万の密行列
今は、富岳ですしね
あと、河村知記氏 博士論文とか
3x3の行列の計算を手でできるうんぬんを問うセンスがね
世間しらずだよ
アホとしか言いようがないな
https:スラド/13/12/06/1957243/
スラド
理研、100万×100万の巨大行列の固有値計算を1時間で達成
ストーリー by headless 2013年12月07日
理化学研究所がスーパーコンピューター「京」を使い、100万×100万の密行列の固有値を1時間で計算することに成功したそうだ( 報道発表資料、 60秒でわかるプレスリリース)。
https:
//dspace.jaist.ac.jp
/dspace/bitstream
/10119/17001/5/
paper.pdf
博士論文
GPGPUによる超大規模連立一次方程式の
求解高速化に向けた省メモリ指向疎行列格納方式
に関する研究
河村 知記
主指導教員 井口 寧
北陸先端科学技術大学院大学
情報科学研究科
令和 2 年 9 月
概 要
近年,自組織内の小規模な計算資源を使用するオンサイト環境での大規模かつ高精度
な数値シミュレーションの需要が拡大している.数値シミュレーションで度々用いられる
Finite Different Method (FDM) や Finite Element Method (FEM) は,最終的に大規模な
連立一次方程式を解く必要があり,膨大な計算量となる.
850:132人目の素数さん
23/02/25 09:44:44.10 ZowC59iz.net
>>767
なんかURLが通らない
必要ならば
適当に検索たのむ
851:132人目の素数さん
23/02/25 10:14:13.19 Bp7ZbkYv.net
>>763
> もっと大きくなると、下記のようなソフトがあるよ
そんなもん使わなくても
852:132人目の素数さん
23/02/25 10:15:58.36 Bp7ZbkYv.net
>>769
EXCELでも計算できるだろ
ま、自分で数式入れる必要はあるけど
一回やれば何度でも使えるから
853:132人目の素数さん
23/02/25 10:17:33.58 Bp7ZbkYv.net
>>764
そして君も異常仲間 よかったな
854:132人目の素数さん
23/02/25 10:19:25.11 Bp7ZbkYv.net
>>765
でも、君、そもそも有限要素法知らないんでしょ?
正則行列も知らないくらいだから
終わってるな 人として
サルは数学なんか諦めて別のことしなよ
855:132人目の素数さん
23/02/25 10:20:58.85 Bp7ZbkYv.net
>>766
>>数学科で落ちこぼれたアホは、世間を知らない
一般教養の数学で落ちこぼれたドアホは、ただの人に成り下がる
ま、もともとただの人だったんだから成り下がったわけじゃないか
856:132人目の素数さん
23/02/25 10:23:53.95 Bp7ZbkYv.net
>>768
> なんかURLが通らない
857: へんな日本語 > 必要ならば そもそも君はこの板に全く必要ない 他所いっていいよ ここには君の友だちのサルは一匹もいないから
858:132人目の素数さん
23/02/25 10:36:40.32 ZowC59iz.net
>>752 追加
>・そもそも行列式は、何を表しているのか?
行列式とは
貴田 研司
・定理(線形変換)
n 行列 A が線形変換の表現行列のとき
① det Aの絶対値は,この線形変換による体積の拡大率を表す.
・行列式とは本質的には,交代・多重線形写像である(行列式の一意性)
https:
//www.u-tokai.ac.jp/uploads/sites/12/2021/03/PP92-99.pdf
東海大学紀要情報通信学部
Vol.10,No.1,2017,pp.92-99
大学初年次における数学教材の提案(その 9)
~行列式の定義~
貴田 研司
あらまし
まず,行列式を平行多面体の体積として幾何学な定義をしたのち,線形変換の表現行列の行列式の意味について解
説する.さらに,行列式の公理を紹介し,行列式は,本質的には交代性と多重線形性をもつ写像であり,一意性をも
つことについて述べる.
2. 行列式の幾何学的定義
定理(線形変換)
n 行列 A が線形変換の表現行列のとき
① det Aの絶対値は,この線形変換による体積の拡大率を表す.
② det Aの符号は,この線形変換が空間の向きを保つか,それとも逆転するかを表す.
3. 行列式の公理
行列式とは本質的には,交代・多重線形写像である.この章では,行列式の第 1 定義(implicit な定義)に
ついて述べる.
定理(行列式の一意性)
上記の行列式関数 F は,ただ一つだけ存在する.
まず具体的に,2 次行列の場合について証明する.
4. おわりに
本論文では,最初に行列式の定義ありきの解説とした.もっと遡ると,行列式の起源は,連立一次方程式の一
般的解法にあり,1678 年のライプニッツの書簡が初出と言われている.今現在よく知られている行列式の定義
が,どのようにして導き出されたのかについては,髙木貞治著「代数学講義 改訂新版」4 )を参照されたい.
参考文献
1) 小寺平治「明解演習 線形代数」共立出版,1982
2)齋藤正彦「線型代数入門」東京大学出版会,1966
3)金子晃「線形代数講義」サイエンス社,2004
4)髙木貞治「代数学講義 改訂新版」共立出版,1965