ガロア第一論文及びその関連の資料スレat MATH
ガロア第一論文及びその関連の資料スレ - 暇つぶし2ch1029:132人目の素数さん
23/03/01 12:33:18.53 Emk+WQGo.net
>>925
>(正直、細部の数学はほとんどお経ですが)
 「まったくお経」の誤りだろ
 一つでも理解できたことあったか?
 何処だ 具体的に書いてみろ
 嘘つきは焼かれて食われるぞ

1030:132人目の素数さん
23/03/01 12:37:14.42 Emk+WQGo.net
何がlogicかも分からんのに
何だか分かったと嘘つくゴキブリは
粉末にされて食われちまえ

1031:132人目の素数さん
23/03/01 12:43:14.36 Emk+WQGo.net
>>931
誤 logic
正 log

1032:132人目の素数さん
23/03/01 13:27:38.23 ErsTZhIh.net
>>ログ版においては,単独の代数多様体 X の代わりに,X とその上の R-因
>>子 B の組 (X, B) を考える.歴史的な経緯から,
>>これをログ組(log pair)と呼び,
>>B を境界因子(boundary divisor)と呼ぶ.
こういうものを考えるきっかけは
小平先生の東大での講義
Nevanlinna理論 小平邦彦述 ; 酒井文雄記
(東大数学教室セミナリー・ノート, 34)
であったと、飯高先生から頂いた葉書に書いてありました。

1033:132人目の素数さん
23/03/01 14:35:00.58 ErsTZhIh.net
Multiplier ideal sheaves and analytic methods in algebraic geometry
by J.-P. Demailly
in School on vanishing theorems and effective results in algebraic geometry
25 April-12 May 2000
URLリンク(www.ictp.trieste.it)

1034:132人目の素数さん
23/03/01 14:36:56.94 ErsTZhIh.net
URLリンク(www.ictp.trieste.it)

1035:132人目の素数さん
23/03/01 14:43:13.88 ErsTZhIh.net
URLリンク(www.semanticscholar.org)

1036:132人目の素数さん
23/03/01 15:16:52.73 Ad/XWAWT.net
>>933
>であったと、飯高先生から頂いた葉書に書いてありました。
ありがとう
なるほど
やっぱ飯高先生か
下記の[12]
”logの理論は,[12]ではコンパクト多様体の理論を非コンパクトなものへ拡張する
ためのものだつたが,この論説では,[K9]でも述べたように,逆にこれを再びコンパクトなもの
へ応用することを考える”だね
URLリンク(www.jstage.jst.go.jp)
数学/45巻(1993)4号/書誌
URLリンク(www.jstage.jst.go.jp)
極小モデル理論の最近の発展について
川又雄二郎(1993年4月28日提出)
[K6]で述べたように,3次元代数多様体に対する極小モデルの存在定理は森[Mo2]によつて
証明が完結したが,残つていたいわゆるアバンダンス予想(良性予想)についても[K11]で最終
的に解決された.こうして,代数曲面のイタリア式分類定理と同様の結果が3次元でも成り立つこ
とが分かつた.この論説では,logの理論の応用という点を中心にしてその事情の解説を試みる。
アバンダンス定理の証明の最終段階で,Shokurov[S2]によるlogフリップの存在定理が有効
に使われた.logの理論は,[12]ではコンパクト多様体の理論を非コンパクトなものへ拡張する
ためのものだつたが,この論説では,[K9]でも述べたように,逆にこれを再びコンパクトなもの
へ応用することを考える.コンパクト多様体上に境界を設定することによってlog化して考えるの
である.§1ではその例として,Q一因子に対する小平消滅定理について述べる.この定理は高次元
代数多様体論の基本的な道具になつた.§2では対数的極小モデルの存在定理を,そして§3ではア
バンダンス定理を解説する.
つづく

1037:132人目の素数さん
23/03/01 15:17:32.66 Ad/XWAWT.net
>>937
つづき
§1.logの理論
幾何学では普通コンパクトな多様体を考える.例}ば,射影的多様体とは射影空間の部分多様体
のことでコンパクトである.滑らかでコンパクトな代数多様体Xの代りに,Xとその上の正規交
差因子Bの対(X,B)を考えるのがlogの理論の出発点である.ここでBは境界に対応する.
飯高[12]によれば,X上の正則微分形式の代りに高々Bに極を持つ対数的微分形式を用いれば,
コンパクトなXに対する理論と平行に開いた多様体X\Bの理論が構成できる.例えば,滑らか
なアフィン多様体Xに対しては,広中の特異点解消定理を使つてXを滑らかな射影的多様体X
にB=X\Xが正規交差因子になるように埋めこみ,高々Bに極を持つ対数的微分形式を考察する.
文献
[Ⅰ2]飯高茂,代数と幾何一代数多様体の種数と分類Ⅱ一,数学,29(1977),334-349。
(引用終り)
以上

1038:132人目の素数さん
23/03/01 16:13:26.43 To6Gmf1w.net
やれ川又だ飯高だと人名ばかり声高に叫ぶばかりで
肝心のlogがちっとも出てこねえなこのウマシカ野郎
対数(微分)形式てえのは
d log z/dz=dz/z の一般化だろう
そんなことも思いつかねえ
ど素人が数学なんぞ興味持つな 
やめちまえこのウマシカ野郎

1039:132人目の素数さん
23/03/01 16:18:20.22 To6Gmf1w.net
>>939
ついでにいっとくが
対数形式を導入したのは日本人じゃねぇ
ドリーニュだ 覚えとけ
俺もたった今知ったばかりだがな
今の今まで気が付かねぇ
浪速の高卒ウマシカ野郎より
全然賢いってもんだぜ
どうだ参ったか このウマシカ野郎

1040:132人目の素数さん
23/03/01 16:51:36.84 ErsTZhIh.net
>>940
>>ログ版においては,単独の代数多様体 X の代わりに,X とその上の R-因
>>子 B の組 (X, B) を考える.歴史的な経緯から,
>>これをログ組(log pair)と呼び,
>>B を境界因子(boundary divisor)と呼ぶ.
こういうものを考えるきっかけは
小平先生の東大での講義
Nevanlinna理論 小平邦彦述 ; 酒井文雄記
(東大数学教室セミナリー・ノート, 34)
であったと、飯高先生から頂いた葉書に書いてありました。

1041:132人目の素数さん
23/03/01 17:10:04.10 Ad/XWAWT.net
>>938
>[I2]飯高茂,代数と幾何一代数多様体の種数と分類II一,数学,29(1977),334-349。
なるほど。これが”ログ(log)”の起源ですね。納得です
これ、格調高いね
なお、飯高先生は最後の方で、”川又の対数変形[13]”に言及している
URLリンク(www.jstage.jst.go.jp)
代数多様体の種数と分類II 飯高茂 1977年29巻4号p.334-349
URLリンク(www.jstage.jst.go.jp)
序論
代数と幾何は密接に関連している.それを明確
にはじめて打ち出したのはR.Descartesの解析幾
何であろう。その後R.Dedekind,1,.Kronecker
らのイデアル論の発展をへて,A.Grothendieckに
よるスキームの理論が誕生し,可換環と代数多様
体はスキームとして美しく統一され,両者の相互
関係は余すところなく解明された.図表化すると,
解析幾何
 ↓
イデアル論
 ↓
スキームの理論
 ↓
 ?
?にあたるものはいろいろあるに違いない。こ
こでは,そこに入るべき1つの見方を提出して,
読者の批判を受けてみたい。
スキームによる可換環と代数多様体の統合は,
必ずしも幸福をもたらさなかった.両者にある興
味深い性質,重要な理論を捨てて,形式上の統一
を成就させた感が残るのは否めない.さてひとま
ず,可換環と代数多様体の構造的類似を書きつら
ねてみよう.以下k=C'と仮定する.
P4
§2.対数形式.
(V,V,D)を非特異3対としよう。高々Dにの
み極を許す有理1型式の芽の層を91(*D)とかく。
さてV上の層Ω^1(logD)をP.Deligne[1]にした
がつて定義する
つづく

1042:132人目の素数さん
23/03/01 17:10:34.38 Ad/XWAWT.net
>>942
つづき
P5
さらにi>0に対し,Ω^i(logD)=∧^iΩ^i(logD)
とおき,Dに沿って対数的極をもつVの有理a
型式,略して,Vの対数Z型式の芽の層とよぶ
この大域切断の空間170(V,2(1ogD))はDeligne
のHodge理論[1]において詳しく研究され,たと
えば,これらの元はd閉型式であることが示され
た。
対数微分すると,

P7
すなわち,Dに対数的極を許すことによりふえる
1型式の次元はbl(V)bl(V)という位相幾何的不
変量である。これこそ第3種微分の基本定理なの
であった。これをきっかけにVの準Albanese写
像が定義される.
P12

は固有


1043:双有理正則写像であり, これに対数的公岐公式を適用する: 略 ところで, A^2-V(x^p(1十α1x十…十σm-p-1x^m-p-1十x^m-py)+b) は、A^2-V(xmy・+1)の川又の対数変形であり [13],極めて簡単なものといってよい (引用終り) 以上



1044:132人目の素数さん
23/03/01 17:34:25.69 Ad/XWAWT.net
>>940
なんだ?オチコボレが、この話にいっちょカミしたいの?w スレリンク(math板:5番)
>対数形式を導入したのは日本人じゃねぇ
>ドリーニュだ 覚えとけ
違うな
ドリーニュと飯高の差分を取るべし
下記のように、DeligneのHodge理論[1]そのままではなく
それをテンソル積を使って拡張していますよ
URLリンク(www.jstage.jst.go.jp)
代数多様体の種数と分類II飯高茂1977年29巻4号p.334-349
URLリンク(www.jstage.jst.go.jp)
P4
§2.対数形式.
P5
略はDeligneのHodge理論[1]において詳しく研究され,たと
えば,これらの元はd閉型式であることが示され
た。さて,われわれの双有理幾何では,もう少し
一般な層を考察する方がよい.すなわち,M=
(m1,…,m%)を非負整数の組とし,Ω^1(1ogD)のm1
回Ov上テンソル積,Ω^2(logD)のm2回テンソル
積,…,…mn.回テンソル積を考え,これらのす
べてのテンソル積をΩ(logD)^Mとかき,

文 献
[1 ] P. Deligne, Theorie de 1-lodge II, Publ. Math.
de I. H. P. S. N., 40 (1973), 5-57.

1045:132人目の素数さん
23/03/01 17:44:01.77 gDA28FZb.net
>>944
>この話にいっちょカミしたいの?
 高卒は歯がないから全然噛めてねぇじゃん
>ドリーニュと飯高の差分を取るべし
 最初はドリーニュ
 貴様の負け 日本の大敗北

1046:132人目の素数さん
23/03/01 19:06:16.28 ErsTZhIh.net
Logarithmic vanishing theorems on compact K¨ahler manifolds I
Chunle Huang, Kefeng Liu, Xueyuan Wan, and Xiaokui Yang
この論文によれば
The basic properties of the sheaf of logarithmic differential forms and of the sheaves with logarithmic integrable connections on smooth projective manifolds were developed by Deligne in [5].
[5] Deligne, P. Equations differentielles `a points singuliers
reguliers. Springer Lect. Notes Math. 163
(1970).

URLリンク(doi.org)

1047:132人目の素数さん
23/03/01 20:53:45.03 WuFVYFkU.net
次スレ立てた
スレタイとテンプレに、”乗数イデアル”を含めましたw
ガロア第一論文と乗数イデアル他関連資料スレ2
スレリンク(math板)

1048:132人目の素数さん
23/03/01 22:54:17.03 WuFVYFkU.net
>>947
ありがとう
wikipediaに記事がある
特に英文では、The concept was introduced by Pierre Deligne.[1]
とあるので、符合しますね
URLリンク(ja.wikipedia.org)
対数的微分形式
複素多様体論や代数多様体論では、対数的(logarithmic)微分形式は、ある種類の極をもつ有理型微分形式である。
X を複素多様体とし、D ⊂ X を因子、ω を X?D 上の正則 p-形式とする。ω と dω が D に沿って大きくとも 1 の位数の極を持つとき、ω を D に沿って対数的極を持つという。ω は対数的 p-形式とも呼ばれる。対数的 p-形式はD に沿った X 上の有理 p-形式の層をなし、次のように書く。
Ω^p X(log D).
リーマン面の理論では、次の局所表現を持つ対数的 1-形式が存在する。
ここに g は 0 で正則で 0 とはならなく、m は f の 0 でのオーダーである。すなわち、ある開被覆が存在し、この微分形式の対数微分としての局所表現が存在する(通常の微分作用素 d/dz の中の外微分 d を少し変形する)。ω が整数の留数の単純極を持つだけであることに注意する。高次元の複素多様体では、�


1049:|アンカレ留数(英語版)(Poincare residue)は、極に沿った対数的微分形式の振る舞いを記述することに使われる。 https://en.wikipedia.org/wiki/Logarithmic_form Logarithmic form In algebraic geometry and the theory of complex manifolds, a logarithmic differential form is a differential form with poles of a certain kind. The concept was introduced by Pierre Deligne.[1] In short, logarithmic differentials have the mildest possible singularities needed in order to give information about an open submanifold (the complement of the divisor of poles). (This idea is made precise by several versions of de Rham's theorem discussed below.) Logarithmic differentials in algebraic geometry つづく



1050:132人目の素数さん
23/03/01 22:54:51.39 WuFVYFkU.net
>>948
つづき
Historical terminology
In the 19th-century theory of elliptic functions, 1-forms with logarithmic poles were sometimes called integrals of the second kind (and, with an unfortunate inconsistency, sometimes differentials of the third kind).
For example, the Weierstrass zeta function associated to a lattice
Λ in C was called an "integral of the second kind" to mean that it could be written
ζ(z)=σ '(z)/σ(z)
In modern terms, it follows that
ζ(z)dz=σ(z)/σ is a 1-form on C with logarithmic poles on Λ , since Λ is the zero set of the Weierstrass sigma function σ(z).
Mixed Hodge theory for smooth varieties
Over the complex numbers, Deligne proved a strengthening of Alexander Grothendieck's algebraic de Rham theorem, relating coherent sheaf cohomology with singular cohomology.
Notes
[1] Deligne (1970), section II.3.
References
Deligne, Pierre (1970), Equations differentielles a points singuliers reguliers, Lecture Notes in Mathematics, vol. 163, Springer-Verlag, doi:10.1007/BFb0061194, ISBN 3540051902, MR 0417174, OCLC 169357
URLリンク(manabitimes.jp)
高校数学の美しい物語
対数微分法のやり方と例題~x^x の微分 2021/03/07
(引用終り)
以上

1051:132人目の素数さん
23/03/01 23:14:50.61 WuFVYFkU.net
>>939
>対数(微分)形式てえのは
>d log z/dz=dz/z の一般化だろう
あんたの言い方ならば、下記
 >>948-949 Logarithmic form
Historical terminology
In the 19th-century theory of elliptic functions, 略
ζ(z)=σ '(z)/σ(z)
In modern terms, it follows that
ζ(z)dz=σ(z)/σ is a 1-form on C with logarithmic poles on Λ , since Λ is the zero set of the Weierstrass sigma function σ(z).
などとあるから
19世紀のWeierstrassまで遡るぜよwww
そこまで行けば、URLリンク(manabitimes.jp)
高校数学の美しい物語
対数微分法のやり方と例題
そのものじゃんかw
だから、19世紀のWeierstrassに対して、Deligne氏のオリジナルな部分があるんだろ?
そして、Deligne氏に対して、MMPでは飯高氏のオリジナルな工夫があるってことよ
おっさん、>>945の 日本の大敗北ってなに?w
あのな
数学は生き物です
20世紀のDeligne氏から、2023年のいま、なにがしかの進歩はしているんだよ
それだけでなく、Deligne氏の理論を喰って、MMPに貢献した日本人が居たことは事実だろう
あと、ビルカー(Birkar),カシーニ(Cascini),ヘーコン(Hacon),マッカーナン(McKernan)で全て終わったわけじゃない
オープンも残っているだろう?
岩波 高次元代数多様体論 川又 雄二郎 2014 >>926 に書いてあるみたいだな

1052:132人目の素数さん
23/03/02 02:32:32.17 VrkpXNWd.net
体論を使わずにガロアの理論を平易に説明する本はあるか?

1053:132人目の素数さん
23/03/02 07:19:03.13 um/GF8z8.net
>>951
13歳の娘に語る ガロアの数学 – 2011/7/29
金 重明 (著)

1054:132人目の素数さん
23/03/02 08:22:43.95 FptXa6Ac.net
>>951
>体論を使わずにガロアの理論を平易に説明する本はあるか?
ガロアの第一論文です
ガロアが第一論文を書いたとき、体論はなかった
代わりに、Galois resolvent 下記 を、使いました
あとは、下記 松田 修など
URLリンク(www.tsuyama-ct.ac.jp)
Matsuda’s Web Page
URLリンク(www.tsuyama-ct.ac.jp)
・ ガロア理論入門ノート => ガロア理論を理解しよう
URLリンク(www.tsuyama-ct.ac.jp)
数学の魅力をイメージする
ガロア理論のストーリー
(19 世紀のフランスの少年が作った理論)
松田 修
2022 年 11 月 14 日
URLリンク(en.wikipedia.org)(Galois_theory)
Resolvent (Galois theory)
Terminology
・A Galois resolvent is a resolvent such that the resolvent invariant is linear in the roots.

1055:132人目の素数さん
23/03/02 08:50:55.16 Xwq4QS9Z.net
>>950
>19世紀のWeierstrassまで遡るぜよ
 土佐弁?
 そういうことなら元はCauchyの積分公式
 更に遡ればEulerの公式
>日本の大敗北ってなに?
>…に貢献した日本人が居たことは事実だろう
でもそれはあんたじゃない
つまり負けたのはあんたか
もういいからここに書くなよ負け犬高卒

1056:132人目の素数さん
23/03/02 08:58:32.61 JWnc5t7b.net
「体を使うから難しい」というのがそもそも誤り。
アーベル・ガロアの論文にも、implicitには体は使われている。
なぜなら、「既知量」というのがあって、そこから
「加減乗除を有限回繰り返して得られる数の全体」
という概念は絶対に必要だが、これは体そのもの。
現代の教科書で初学者が「難しい」と感じる要因は
正標数の場合も通用するようにとか「一般的な設定」
になっているからであって、体論を使うから
というわけではない。

1057:132人目の素数さん
23/03/02 09:01:42.45 Xwq4QS9Z.net
>>953
任意の方程式について
そのGalois resolventを
具体的に書け

1058:132人目の素数さん
23/03/02 09:17:55.37 ViQ0DtV4.net
>>955
体論と無関係に
群論との関係がわかってないと
ガロア理論は分からない
例えば、ガロアリゾルベントは
ラグランジュリゾルベントの一般化だが
どこをどう一般化したか分からんと意味ない

1059:132人目の素数さん
23/03/02 12:46:50.31 zGki7AKk.net
>>957
必要なことは2012の最初のガロアスレに皆書いてあった 
1が読めずに11年空費しただけ

1060:132人目の素数さん
23/03/02 16:45:39.46 aMnvNWEq.net
>>915
>広中の特異点解消
機械学習と特異点解消
URLリンク(jp.quora.com)
quora
フィールズ賞受賞の広中さんの特異点解消定理が、機械学習に応用されはじめています。特異点解消定理が分かる人が日本で増えると人工知能での遅れを取り戻せるでしょうか?
回答
Kojima Tadashi 3年前
機械学習の発展に代数幾何(やそれを応用した情報幾何)の分野の知識が非常に重要であることは確かです。機械学習に関わる人は、できる限り理解している「べき」だとは思います。
日本がどうのこうのは、また、別の話ですが。
URLリンク(www.mathsoc.jp)
「数学通信」第25巻第2号目次 2020
URLリンク(www.mathsoc.jp)
「数学通信」第25巻第2号 特集:数学の拡がり 2020
人工知能×特異点論=? 日本大学理工学部数学科 青柳美輝
1 はじめに
本稿では学習理論の数理的な研究の立場から,人工知能に必要な機械学習に対する,代
数幾何学とくに「特異点理論」の寄与について述べる.
つづく

1061:132人目の素数さん
23/03/02 16:46:08.07 aMnvNWEq.net
つづき
P21
7 最後に
これらは,学習理論において代
表的な指標であり,大変重要な値である.これらの主要項は,代数幾何などで定義された
log canonical threshold (= λ) から得られ,この理論値が求まれば,汎化損失や自由エネ
ルギーの挙動を知ることができる.真の分布が分からないという状況においては,これら
の理論値は解析のための重要な礎となる.また,理論値が分かっていれば,確率モデルの
評価はもちろん,事後分布を数値的に実現したときに,その実現アルゴリズムが事後分布
をよく近似しているかどうかを確認することができる.このように,理論値は,数値計算
の正しさを確認する手段ともなる.
このような特異点論からの考察はベイズ推測と他の推測法の精度の違いを明らかにする
ことができるため,特異モデルの場合,最尤推測,事後確率最大化推測は適切ではなく,
ベイズ推測が適していることも証明されている.
人工知能は,現在,応用面では急速に発展している.しかし,実験的経験的な観点から
議論されることは多いが,理論的な解析はまだ多くの部分で進んでいないように思われ
る.したがって,特異点論を取り入れた学習理論を用いて解析をしていく方法は,これか
ら非常に重要な役割を果たすのではないだろうか.
新型コロナウィルスの影響で,講演はなくなりましたが,このように原稿を書く機会を
与えていただき大変感謝しております.
(引用終り)
以上

1062:132人目の素数さん
23/03/02 18:01:46.72 aMnvNWEq.net
>>958
>必要なことは2012の最初のガロアスレに皆書いてあった 
> 1が読めずに11年空費しただけ
これはこれは、オチコボレのおサルさんだね
1)2012の最初のガロアスレを立てたのは私だし
 あのスレの数学的な内容は、だいたい私がコピペしたものだよ
2)「コピペだから分かってない」と言いたいらしいのだが
 そもそも分かっていないと、検索しても良い情報はヒットしない(キーワード選びとかヒットした情報の選別とかある)
 そして、コピペ元には、だいたい10倍くらいの情報がある
 そこから、適切にコピーするには分かってないとできないし
3)なので、皆書いてあったということは
 それなりの理解はしている疎明にはなるよ
4)”読めず”ねw 数学科学部の期末とかの試験で100点満点の人少ないだろう
 何点か減点されたからとて、全く 分かってない・読めてないということもない
 それ普通だろ? (”読めず”って、思いたいんだろうねw)
5)”11年空費”ねw
「院試で出題される問題だけを勉強することはできない!」は、基本中の基本定理だろうぜwww
 同様に、自分の人生で必要になる数学のみを予見して、選んで勉強することは不可能!だよ
 例えば、前振りで>>959の「機械学習と特異点解消」をご紹介したが
 広中先生も、いまどきのAI機械学習に自分の定理が使われるとは
 前世紀には夢にも思っていなかったろう
6)>>798 東大で 冶金出身の人、精密機械出身の人、セミナーで一緒だったという
 多分数学のセミナーとして、彼らは同じ意識だろう
 もし広中の「特異点理論」セミナーだったらw、すごく先見の明があるとしても
 そうでなくとも、そのセミナーは無駄


1063:ではないと思う  東大 冶金出身の人、精密機械出身の人、正解だと思うよ(そのセミナーで数学科の人とに顔見知りできただけでも吉だな)



1064:132人目の素数さん
23/03/02 18:09:06.26 ql5AnuXb.net
この分脈ではcomplex singularity exponentだけでなく
b関数も重要かも

1065:132人目の素数さん
23/03/02 21:16:20.68 FptXa6Ac.net
>>692
>この分脈ではcomplex singularity exponentだけでなく
>b関数も重要かも
b関数か・・
10年以上前に、書店でD加群の本をチラ見したときに、書いてあったような・・・
うーんと、検索すると下記か
斎藤 盛彦先生は、不勉強で存じ上げないが、愛光高校だと加藤和也先生と同窓?
書店で立ち読みしたのは、下記にD加群と計算数学だったかも。グレブナー基底の話もあったような無かったような・・
下記 数学誌の計算機と数学 数式処理の歴史と現在 のPDFも面白い
特異点との関係? すんません、よく分かっていません、立ち読みしただけなので(苦笑)
URLリンク(ja.wikipedia.org)
斎藤盛彦
斎藤 盛彦(さいとう もりひこ)は日本の数学者。京都大学数理解析研究所特任教授。専門は代数解析学、代数幾何学。
愛光高校、東京大学卒業。同大学院修士課程修了(1979)。京都大学理学博士 (1986)。京都大学数理解析研究所助手を経て現職。1991年には日本数学会春季賞受賞。1990年のICMに招聘される。
研究内容
Hodge加群の(偏極Hodge加群、混合Hodge加群など)理論の創始。超関数 (hyperfunction) におけるb関数の概念を代数多様体上へ拡張した。
乗数イデアルと柏原-MalgrangeのV-filtrationの等価性の証明。乗数イデアルとb関数との関係の一般化。
URLリンク(ja.wikipedia.org)(%E6%95%B0%E5%AD%A6%E8%80%85)
加藤和也 (数学者)
略歴
1970年(昭和45年)- 愛光高等学校卒業
1975年(昭和50年)- 東京大学理学部数学科卒業
つづく

1066:132人目の素数さん
23/03/02 21:16:48.21 FptXa6Ac.net
>>963
つづき
URLリンク(seesaawiki.jp)
失敗の研究
グレブナー基底 (すうがくの風景)
最終更新: uedam1984b 2021年07月14日
D加群と計算数学 (すうがくの風景)
目次
3. 微分作用素環とグレブナー基底
4. 多項式の冪とb関数
4.1 多項式の冪とD加群
4.2 b関数
4.3 局所b関数と準素イデアル分解
6. (付録)数式処理システムについて
6.1 Riss/Asir
6.2 kan/srn1
URLリンク(www.jstage.jst.go.jp)
URLリンク(www.jstage.jst.go.jp)
数学/66 巻 (2014) 3 号
計算機と数学 数式処理の歴史と現在
野呂 正行, 横山 和弘 ? 算や,微分作用素を新たな変数とする D-加群などの非可換環での代数計算など,多方面に渡り進歩し ... このような b(s) のうち次数が最小のものを f の b 関数と呼ぶ.
(引用終り)
以上

1067:132人目の素数さん
23/03/02 21:21:55.22 fYYMxny4.net
>>961
リアル落ちこぼれが言い訳しまくり
スレリンク(math板:415番)
>つまり、根の任意の二つがわかれば・・・は
>V=Aa+Bb+Cc+・・・ ガロアリゾルベントが、実は
>V=Aa+Bb と二つの根で十分だと
ギャハハハハハハ!!!
こいつ正真正銘のウマ&シカ野郎だ!!!
んなわけないだろ なに○違い読みしてんだ
>とすると、置換(a,b,c,・・・)でV=Aa+Bbの取る値の数は、n(n-1)となり、
>この場合のガロア群の位数が直ちにでるのだった
ド素人の○違い妄想の極み
「根が2つ」というのは、巡回群の2回積み重ね、って意味だよ
その場合、もちろん、ガロアリゾルベントの120個の根は20個に縮小できるが
係数のA,B,Cは勝手に選んだらダメ 
そんなことも読めないのかこのド素人は

1068:132人目の素数さん
23/03/02 21:24:48.88 fYYMxny4.net
>書店で・・・の本をチラ見
チラ見で挫折するなら数学諦めろ
 ラグランジュリゾルベント:巡回群
=ガロアリゾルベント:ガロア群
の関係も見えないヤツにガロア理論なんか生涯わからん
数学のことは綺麗さっぱりわすれろ 
工学部お情け卒のウマ&シカは

1069:132人目の素数さん
23/03/02 21:34:12.19 fYYMxny4.net
スレリンク(math板:28番)-34
5個の根 r1,r2,r3,r4,r5 について
定数c1,c2,c3,c4,c5を用意して
線形結合
c1rσ(1)+・・・+c5rσ(5)
を考える
σ(1),・・・,σ(5)は、1~5の置換
置換の全体は5!=120だから
上記の線形結合の全体は120個あり
これら全てを根にもつ代数方程式は
当然5次の対称群で不変である
これがガロアリゾルベント
さて、もしガロア群が対称群より小さければ
120個の線形結合全部を考える必要はない
ただしその場合、勝手に定数c1,c2,c3,c4,c5は設定できず
当然ガロア群に合わせて特定の数を選ぶ必要がある
例えば巡回群なら、1のベキ根
(これをラグランジュリゾルベントという)

1070:132人目の素数さん
23/03/02 21:37:14.82 fYYMxny4.net
>>967
もし、方程式のガロア群が巡回群なら
ラグランジュリゾルベントのべき乗が
方程式の係数と1のベキ根の多項式で表せる
だからそのベキ根を求めれば
ラグランジュリゾルベントの根が求まり
そこから方程式の根が求まる
方程式がベキ根で解けるとはそういうこと

1071:132人目の素数さん
23/03/02 21:42:49.60 fYYMxny4.net
965で指摘したような○違い読みをしてるようじゃ
ガロアリゾルベントもラグランジュリゾルベントも分かってない
要するにリゾルベントが何なのか全然分かってない
「ガロアリゾルベントがガロア群の作用で不変」
というのが分かってないんじゃ
ガロア理論が全然分かってないってこと
10年もチラチラ本の文字を見るだけで
論理で考えることもしなきゃ
計算で確かめることもしない
それじゃ数学なんかわかるわけない
数学嫌いなら数学諦めて
ネトイヨ(右翼(right wing)じゃなく違翼(wrong wing))してろよ

1072:132人目の素数さん
23/03/02 22:25:47.98 um/GF8z8.net
ガロア群はもういいから
にぎやかになってきた乗数イデアルに
移ろうと思うのだが

1073:132人目の素数さん
23/03/03 06:13:28.50 /d27kHTP.net
>>970
次スレでやりな
ま、1は乗数イデアルでも惨敗するだろうがね
なんたって論理がわからねえ計算ができねえ畜生だからな
次は人間に生まれ変わりな

1074:132人目の素数さん
23/03/03 08:25:14.18 vmM77e+R.net
メモ
URLリンク(www.math.kyoto-u.ac.jp)
Osamu Fujino
URLリンク(www.math.kyoto-u.ac.jp)
報告集
URLリンク(www.math.kyoto-u.ac.jp)
Vanishing theorem and
non-vanishing theorem
消滅定理と非消滅定理
京都大学大学院理学研究科数学教室
藤野修
1 消滅定理と非消滅定理ってなに?
今ここを読んでいる人は、せめてこの章だけは読んで欲しい。この章
は高次元代数多様体論普及のための解説である。非専門家向けに書いて
ある。以下すべて複素数体上で考える。
これによって、X 上の線形系 |D| の研究に次元によ
る帰�


1075:[法が有効になる。Y 上の線形系 |D|Y | のメンバーを X 上の線形系 |D| のメンバーに持ち上げることが出来るからである。この手の議論は、 80 年代前半から現在にいたるまで、極小モデル理論研究の際の常套手段 である。広中の特異点解消定理と係数を揺するというテクニックを組み 合わせた川又の X-論法はその典型例である。もっと言うなら、小平の埋 め込み定理も同様の議論である。80 年代後半から始まる乗数イデアル層 の理論では、Y を X の閉部分スキームとし、 H1(X, IY ○+ OX (D)) = 0 を使うことが多い。ここで、IY は Y の定義イデアル層である。今回の話 でも、上のようなイデアルを引っ掛けた形の消滅定理が大活躍する。よ くよく考えると、小平が小平消滅定理をつかって小平の埋め込み定理を 証明した頃から、線形系を扱う基本的なテクニックは何も変わっていな いのである。 最後に、非消滅定理について考えてみたい。



1076:132人目の素数さん
23/03/03 09:15:19.62 5969eG/O.net
>>広中の特異点解消定理と係数を揺するというテクニックを組み
>>合わせた川又の X-論法
原型はこれ↓
URLリンク(en.wikipedia.org)
もう一人のラマヌジャン

1077:132人目の素数さん
23/03/03 11:35:55.71 6VMl6vj6.net
>>973
>もう一人のラマヌジャン
なるほど、ありがとう
下記だね
URLリンク(en.wikipedia.org)
Chakravarthi Padmanabhan Ramanujam (9 January 1938 ? 27 October 1974) was an Indian mathematician who worked in the fields of number theory and algebraic geometry.
Like his namesake Srinivasa Ramanujan, Ramanujam also had a very short life.[1]
(google訳一部修正)
彼の同名のスリニバサ・ラマヌジャンのように、ラマヌジャムも非常に短命でした。[1]
Early life and education
Career
He proceeded to write his thesis in 1966 and took his doctoral examination in 1967. Dr. Siegel, who was one of the examiners, was highly impressed with the young man's depth of knowledge and his great mathematical abilities.
Ramanujam was a scribe for Igor Shafarevich's course of lectures in 1965 on minimal models and birational transformation of two-dimensional schemes. Professor Shafarevich subsequently wrote to say that Ramanujam not only corrected his mistakes but complemented the proofs of many results.
The same was the case with Mumford's lectures on abelian varieties, which were delivered at TIFR around 1967. Mumford wrote in the preface to his book that the notes improved upon his work and that his current work on abelian varieties was a joint effort between him and Ramanujam.
(google訳一部修正)
彼は 1966 年に論文を書き始め、1967 年に博士号の試験を受けました。試験官の 1 人であったシーゲル博士は、若い男の知識の深さと彼の優れた数学的能力に非常に感銘を受けました。
Ramanujam は、1965 年にIgor Shafarevichの講義コースの書記であり、極小モデルと 2 次元スキームの双有理変換に関するものでした。Shafarevich 教授はその後、Ramanujam は自分の過ちを正しただけでなく、多くの結果の証明を補完したと書いています。
つづく

1078:132人目の素数さん
23/03/03 11:36:18.35 6VMl6vj6.net
>>974
つづき
1967 年頃にTIFRで行われたマンフォードのアーベル多様体に関する講義の場合も同じでした。マンフォードは彼の本の序文で、ノートが彼の研究を改善し、アーベル多様体に関する彼の現在の研究を改善したと書いています。彼とラマヌジャムの共同作業でした。
Illness and death
In 1964, based on his participation in the International Colloquium on Differential Analysis, he earned the respect of Alexander Grothendieck and of David Mumford, who invited him to Paris and Harvard. He accepted the invitation and was in Paris, but for a brief period.
He was diagnosed in 1964 with schizophrenia with severe depression and left Paris for Chennai.
During one of the attacks, he tried to take his life, but was rescued in time. However, late one evening on 27 October 1974, after a lively discussion with a visiting foreign professor he took his life with an overdose of barbiturates.
(google訳一部修正)
1964年、微分の解析に関する国際コロキウムへの参加で、彼はアレクサンダー・グロタンディークとデビッド・マンフォードの尊敬を集め、彼らは彼をパリとハーバードに招待した.
彼は 1964 年に重度のうつ病を伴う統合失調症と診断され、パリを離れてチェンナイに向かった。
一度彼は自殺しようとしましたが、間に合って救出されました。しかし、1974 年 10 月 27 日の夜遅く、外国人教授との活発な議論の後、バルビツレートの過剰摂取により命を落としました。
(引用終り)
以上

1079:132人目の素数さん
23/03/03 14:21:53.71 6VMl6vj6.net
>>962
>b関数も重要かも
”「実対数閾値」は代数幾何学における「乗数イデアル」(Multiplier ideal) に 対応して現れる双有理不変量です”
渡辺澄夫 東工大
なるほど
URLリンク(watanabe-www.math.dis.titech.ac.jp)
渡辺澄夫 東工大
URLリンク(watanabe-www.math.dis.titech.ac.jp)
広く使えるベイズ情報量規準 (WBIC) 渡辺澄夫
3. 具体的な方法
方法は極めて簡単です。
(1) 逆温度が (β=1/log n) であるときの事後分布を作る。
(2) その事後分布で対数尤度の平均を計算したものが WBIC です。
(3) 数値実験でとてもうまく動きますので、お試しください。
PDF で見る
本当にうまくいくのかどうか実際に使ってみる。 MATLAB file 。
プログラムを動かしてみたときの結果をみたい。 計算例 。
(注)正則でない一般のケースでベイズ自由エネルギーの漸近挙動を理論的に導出すると、 BICにおける「パラメータ数/2」の部分を 「実対数閾値」(Real Log Canonical Threshold) に置き換えたものになります。 縮小ランク回帰の場合の実対数閾値は全ての場合で 理論的に解明されています(数学者・青柳博士の研究(2005)です)ので、 理論値と実験値を比べることができます。実際にプログラムを 動かしてみて値がほぼ同じであることをご確認ください。 理論値と実験値を比較したとき、純粋数学と実世界という正反対のものの間に百年に一度(?)の 幻の架け橋が現れます。
(注(続)) 「実対数閾値」は代数幾何学における「乗数イデアル」(Multiplier ideal) に 対応して現れる双有理不変量です。
代数解析学における「ベルンシュタイン・ 佐藤のb関数」(Bernstein-Sato b-function) の零点とも深い関係を 持


1080:っていることが知られています。



1081:132人目の素数さん
23/03/03 15:11:55.42 6VMl6vj6.net
メモ (これは 複素解析系かな
URLリンク(www.jstage.jst.go.jp)
URLリンク(www.jstage.jst.go.jp)
数学/64 巻 (2012) 2 号/書誌
論説
Einstein計量とGIT安定性II
二木 昭人
(第4節 乗数イデアル層関係)
Nadal[50] 1990 とあるね

1082:132人目の素数さん
23/03/03 16:15:00.57 6VMl6vj6.net
>>965
ありがとう
まあ、そのご指摘部分は、間違いを含んでいるかもしれない
しかしだ、>>974-975より”もう一人のラマヌジャンは、
Igor Shafarevichやマンフォードのアーベル多様体に関する講義で
過ちを正し、彼らの現在の研究を改善した”という
即ち、過ちがあったからとて、人間 Igor Shafarevichやマンフォードの否定にはならんぜよww
それから、例えば、昨日院試があって、解けなかったり あるいは間違えた問題で
今日、解いたり、間違いを正したりする
それもありだよ。つーか、試験以外では、数学は普通にそれで良いんだよ、アホ
つまり、昨日理解が出来てないからと
今日理解出来ていないことの証明にはならんぜよ
そんな当たり前のことを、いちいち説明しなけりゃいかんのかね?
あんたは まったく35年間オチコボレのおサルさんだねぇ~ww スレリンク(math板:5番)
あんた、必死で自分より下を探しているんだね!
哀れだな。幼稚園へ行け!!ww

1083:132人目の素数さん
23/03/03 16:33:01.31 6VMl6vj6.net
>>967
>置換の全体は5!=120だから
>上記の線形結合の全体は120個あり
>これら全てを根にもつ代数方程式は
>当然5次の対称群で不変である
そこは良いが
大事な点は
この120次の方程式に対し
補助方程式の根を添加して
120次の方程式の因数分解を考えるんだ、ガロアは
つまり、この120次の方程式が体論の代わりになっている
この120次の方程式が、補助方程式の根の添加で完全に因数分解できれば、方程式は解けたことになる
元の5次方程式の係数を使ったべき根の添加で、120次の方程式が解けるか?
これを考察するために、ガロアは5次の対称群S5を考察する
この過程で、群の固有分解(現代用語で正規部分群)の概念に到達する
これが、ガロアの考えた理論のあらすじ
体論は無かったから、この120次の方程式が体論の代わりになっている
(この120次は、アルティン流では、120次のベクトル空間になっている)

1084:132人目の素数さん
23/03/03 16:38:12.16 6VMl6vj6.net
>>979 補足
>大事な点は
>この120次の方程式に対し
>補助方程式の根を添加して
> 120次の方程式の因数分解を考えるんだ、ガロアは
普通、5次方程式の解法を考えているのに
120次の方程式を考えてどうするの?w
でしょうね
でも、この120次の方程式は
単なる120次ではなく
元の5次方程式の真の姿だったのです!
それを見抜いた天才ガロアだったのです!!

1085:132人目の素数さん
23/03/03 19:42:50.57 /d27kHTP.net
>>978
> そのご指摘部分は、間違いを含んでいるかもしれない
 「かもしれない」は要らない
> しかしだ、・・・は・・・で過ちを正し、彼らの現在の研究を改善したという
> 即ち、過ちがあったからとて、・・・の否定にはならんぜよ
 あんた、言い訳するとき、必ず土佐弁になるね
 土佐馬鹿にしてんの?
 あんた高知行ったら簀巻きにされて太平洋に沈められるよ
> つまり、昨日理解が出来てないからと
> 今日理解出来ていないことの証明には
> ならんぜよ
 いまだに「箱入り無数目」が理解できない
 高卒ウマシカ野郎が何言っても説得力ゼロ
> あんた、必死で自分より下を探しているんだね!
> 哀れだな。幼稚園へ行け!!
 別に必死にならんでも大阪のヤンキーの貴様が
 数学落ちこぼれの最底辺を死守してるから
 安心して凹りまくれるってもんだ
>>979
> 120次の方程式に対し補助方程式の根を添加して
> 120次の方程式の因数分解を考えるんだ、ガロアは
> 120次の方程式が、補助方程式の根の添加で
> 完全に因数分解できれば、方程式は解けたことになる
Q.補助方程式とは何か?
 例えば3次方程式、4次方程式の場合、
 それぞれ実例を書いて示せ
 
 できるかな(ニヤリ)
> 元の5次方程式の係数を使ったべき根の添加で、120次の方程式が解けるか?
> これを考察するために、ガロアは5次の対称群S5を考察する
 こいつ正真正銘のウマシカだな
 まず5次方程式の5つの根の置換からなる5次の対称群S5で
 不変となる方程式として120次の方程式を示したんだよ ウマシカが!
> この過程で、群の固有分解(現代用語で正規部分群)の概念に到達する
> これが、ガロアの考えた理論のあらすじ
 こいつあらすじから完全に間違�


1086:チてるな ○違いか? > 120次の方程式は単なる120次ではなく > 元の5次方程式の真の姿だったのです!  ウマシカってトンチンカンなこと絶叫して発○するよな  だから大学1年で落ちこぼれるんだよ ウマシカ



1087:132人目の素数さん
23/03/03 20:47:14.77 vmM77e+R.net
>>981
> いまだに「箱入り無数目」が理解できない
それ、全く逆効果だよ
時枝氏の「箱入り無数目」記事不成立が理解できないんだな お主はwww スレリンク(math板)

1088:132人目の素数さん
23/03/03 20:51:36.92 flGazVTm.net
大学2年で落ちこぼれたセミナーでは
最初にアーベルの短い論文の青焼きを渡された
行間が埋められずに苦労していると
ラグランジュの論文のゼロックスコピーをもらった
長すぎて読む元気がわかなかった
学期末にアーベルの楕円関数の論文の青焼きが配られた
それは何年もかけて繰り返し読んだ

1089:132人目の素数さん
2023


1090:/03/03(金) 21:06:43.99 ID:vmM77e+R.net



1091:132人目の素数さん
23/03/03 21:37:22.49 vmM77e+R.net
>>983
ありがとう
東大ね
ガリ刷り、青焼き、ゼロックスね
いわゆるZ世代には、ピンとこないだろうがw
>最初にアーベルの短い論文の青焼きを渡された
それは、いわゆる方程式の群がアーベルになるときの アーベルの方程式論でしょう
私は現物は見たこと無いが、ガロア理論では、ガロアはアーベルをよく研究していたという(第一論文にも取り入れているとか言われる)
>ラグランジュの論文のゼロックスコピーをもらった
ああ、長かったですね。このスレで原文発掘したけど
うーんと、アーベルとラグランジュは、仏語かな?
東大だと、仏語であっても数学なんだから読めるだろ式かw (海に叩き込んで勝手に泳げ式ね)
>学期末にアーベルの楕円関数の論文の青焼きが配られた
>それは何年もかけて繰り返し読んだ
へー、楕円関数の和書の通俗の易しい本しか読んでないですが
高木先生の近世数学史談には、いろいろ面白く書いてありましたね

1092:132人目の素数さん
23/03/03 22:04:39.20 /d27kHTP.net
>>984
> 3次方程式、4次方程式の場合の解説は、・・・
 何処に書いてあるか知っても理解できないならただのウマシカ
 理解したなら、何処に書いてあったかは忘れていい
 さあ、解説してみろ できなきゃ貴様は数学に負けたウマシカ野郎
> ガロア分解式から成る 120次の方程式と、
> もとの5次方程式は、代数的には等価だよ
 そんな発言しても円分方程式も解けない貴様は
 数学に負けたウマシカ野郎

1093:132人目の素数さん
23/03/03 22:46:12.84 flGazVTm.net
>>985
>>楕円関数の和書の通俗の易しい本
ちょっと気になったので
よかったら書名と著者名を教えてください

1094:132人目の素数さん
23/03/03 23:20:03.38 vmM77e+R.net
>>972
>URLリンク(www.math.kyoto-u.ac.jp)
>Vanishing theorem and
>non-vanishing theorem
>消滅定理と非消滅定理
これ
URLリンク(www.math.kyoto-u.ac.jp)
報告集 Osamu Fujino
より
Vanishing theorem and non-vanishing theorem(消滅定理と非消滅定理)
数理解析研究所講究録, no. 1745, p123--138 (2011) non-vani-rims3.pdf, vanishing.pdf
と同じだね、2009年 9 月 17日付け

1095:132人目の素数さん
23/03/03 23:50:00.73 vmM77e+R.net
>>987
>>>楕円関数の和書の通俗の易しい本
>ちょっと気になったので
>よかったら書名と著者名を教えてください
まず、楕円関数自身は、工学部の学部の講義でもちょこっと出てきました
”楕円関数使う・・”って。詳細は忘れました
いま手元にあるのは、2冊
余談ですが、私の流儀は、大体複数の本を見比べるながら読みます
こっちの本で分からないことが、あっちではどうかと(疑問は一人ではなかなか解決しないので)
で、本題
1)URLリンク(www.utp.or.jp)
 楕円関数論 増補新装版 楕円曲線の解析学 著者 梅村 浩 著 発売日 2020/05/27 東京大学出版会
 手元の本の奥付では、20200715 第2冊
 この第6章 楕円関数の応用 6.6で5次方程式の楕円関数による解法があるので、それに惹かれて
 これは、通俗とはいえないかも
2)URLリンク(www.nippyo.co.jp)
 楕円積分と楕円関数 おとぎの国の歩き方 武部 尚志 日本評論社 発刊年月 2019.09
 手元の本の奥付では、20200712 第2冊
 これは、おとぎの国ですが、テータ関数の解説が詳しいので、それに惹かれて(雑誌でテータ関数について読んだので)

1096:132人目の素数さん
23/03/03 23:51:40.97 vmM77e+R.net
>>989 タイポ訂正
第2冊
 ↓
第2刷
(2カ所)

1097:132人目の素数さん
23/03/04 01:35:19.17 qLJkywT3.net
ラグランジュは代数方程式の冪根解法を整理して5次の方程式に対しても
その考えの延長でチャレンジしたが、根の置換から120通りの値を生じる
式を変数とする120次の方程式を60次にまでは落とせることは驚異的な
計算力を以て示せたが、そこから先に進むことができず、将来この問題に
進展があれば戻ってくると述べて一端そこまでを示したが、ついに戻って
くることはなく終わった。その先を進めたのが、円分方程式については
ガウスであり、そうしてラグランジュのプログラムを進めてアーベル、
ルフィ二が一般5次方程式(およびそれ以上の次数の方程式の)の解法の
不可能性を、そうしてついにガロアが一般の方程式の場合についての
冪根解法の理論を完全解明して解決したのであった。

1098:132人目の素数さん
23/03/04 05:52:57.89 XbsJe1Be.net
>>989
やはりね。「通俗書」が引っ掛かったのでお尋ねしてみましたが
楕円関数論の本と言えば今ではこの二冊でしょう。
著者たちは尊敬すべき専門家です。
通俗的な解説の一例↓
。楕円関数とは、ガンマ関数と同様にsin{x}をもとに説明すれば、等式
(-\log{\sin{x}})''=Σ{1/{(x-kπ)^2}}
の変形として得られる
Σ{(-log{(z-m-nτ})''-1/(m+nτ)^2}}+1/z^2}(ただしτは虚数)
のようなC上の2重周期関数で、オイラーとルジャンドルによる定積分の研究の延長上でアーベルにより発見されたものです。レムニスケート関数はこの一種でτ=√-1の場合がこれにあたります
>>991
ありがとうございます。

1099:132人目の素数さん
23/03/04 06:22:47.19 XPxmp+Zy.net
>>991
> ラグランジュは・・・、根の置換から120通りの値を生じる式を変数とする
> 120次の方程式を60次にまでは落とせることは驚異的な計算力を以て示せたが、
判別式(解の差積の2乗となる対称式)を使ってね 
n!から(n!)/2次に落とすのはそれで可能
URLリンク(ja.wikipedia.org)
> そこから先に進むことができず、・・・終わった。
5次以上の交代群は単純群だから分解しようがない

1100:132人目の素数さん
23/03/04 08:58:46.02 Ykziy9We.net
>>992
>やはりね。「通俗書」が引っ掛かったのでお尋ねしてみましたが
>楕円関数論の本と言えば今ではこの二冊でしょう。
>著者たちは尊敬すべき専門家です。
ありがとうございます
なるほど
良い本を買ったんだ!w
>のようなC上の2重周期関数で、オイラーとルジャンドルによる定積分の研究の延長上でアーベルにより発見されたものです。レムニスケート関数はこの一種でτ=√-1の場合がこれにあたります
ガウス整数論(DA 高瀬訳)の第7章 円の分割を定める方程式
冒頭の355節に
「この理論の諸原理は、円関数のみならず・・例えば積分∫1/√(1-x^4) dx に依拠する超越関数に対しても、そうしてまたさまざまな種類の合同式に対しても
 同様の成果を伴いつつ、適用できる・・」
「我々は、それらの超越関数については特別の包括的な著作を準備しているところであり・・」
とあって
まあ、クイズで言えば”ヒント”が書いてあります
アーベル、ガロア氏らは、このヒントは見ていたという説があります
(因みに、ガウスはこのDAで、5次の代数方程式の代数的解法はなさそうだ みたく書いてあったという。
 で、アーベルがそれを証明した論文の写しを、ガウスに手紙で送ったら、論文表題に”代数的解法”という文字を落としていたので、ガウスは論文読まずに
 ポイしたと、高木先生が近世数学史談で書いていた)
因みに、積分∫1/√(1-x^4) が、下記 レムニスケートの弧長と関係しているというのは
見る人が見れば分かるらしい
(参考)
URLリンク(www.juen.ac.jp)
代数学演習 楕円関数論入門 中川 仁 2011 年度後期
目 次
1 円弧の長さ 1
2 レムニスケートの弧長 2
4 複素関数としてのレムニスケート関数 24
4.1 2 重周期関数 . 24
5 楕円関数 32
6 虚数乗法
2 レムニスケートの弧長
P3
L(r1)=∫0~r1 1/√(1-x^4) dx
URLリンク(ja.wikipedia.org)
レムニスケート
URLリンク(en.wikipedia.org)

1101:132人目の素数さん
23/03/04 09:16:36.96 Ykziy9We.net
>>961
>「院試で出題される問題だけを勉強することはできない!」は、基本中の基本定理だろうぜwww
> 同様に、自分の人生で必要になる数学のみを予見して、選んで勉強することは不可能!だよ
このスレももうすぐ終わって、次に移る予定ですが
駄文を書いておきます
”必要になる数学のみを予見して、選んで勉強することは不可能!”
として、じゃあどうする?
私の答えは、水道方式
つまり、自分の数学の水源を高くすること
そうしておけば、必要な数学は、水源より下なら、簡単だし
もし、水源より上の問題でも、高い位置に水源があれば、楽だろ?
そして、高い位置から、問題を俯瞰できる
例えば、中学で方程式を習えば、小学校の算数はかなりそれで解けるとか
同様に、大学レベルの微分積分を習得しておけば、高校微積は易しく見える
高校物理で言われたのは、「微分積分使う方が話しは簡単なのだが・・」と
数学ってそういうところがあるよね
ただ、工学は数学屋と同じ時間を、数学にだけ割くことはできない(それやると本業の時間が無くなるから)
だから、>>374の ”かつて, 横田一郎先生がご存命だったときに, よく「ずるく勉強せなあかん」 とおっしゃられていました。 「最短距離で最先端」という意味は, この横田先生の言葉がよく表しています”
は、全く同感です
ガロア理論や、乗数イデアル・・
全部自分の数学の水源を高くすること役立つと思う

1102:132人目の素数さん
23/03/04 09:39:17.62 Ykziy9We.net
では、次スレ
スレリンク(math板)
に移ります
ここは、適当に埋めます

1103:132人目の素数さん
23/03/04 11:07:33.94 XPxmp+Zy.net
>>995
> 自分の数学の水源を高くすること
> そうしておけば、必要な数学は、水源より下なら、簡単だし
> もし、水源より上の問題でも、高い位置に水源があれば、楽だろ?
> そして、高い位置から、問題を俯瞰できる
「簡単」
それは自分が高いところまで登っていえる
自分が高卒レベルの0メートル地帯にいるのに
まるで富士山頂にいるかのごとく妄想しても
何も簡単にならない
実際大阪ヤンキーはなにも俯瞰できてない
ただガロアリゾルベント!120次!とわめいてるだけ
> 工学は数学屋と同じ時間を、数学にだけ割くことはできない
> (それやると本業の時間が無くなるから)
それウソな
実際は論理が分からんから数学書の証明が読めない
読んでも全然理解できない それが真相
だからまず論理を理解しろ
言葉が理解できないのに
書いてあることを理解しようなんて無理
> 「ずるく勉強せなあかん」
> 「最短距離で最先端」
だったら、真っ先に論理を勉強すべき
それが最短距離
それなしに「ガロア理論」とかいっても無駄
商群が巡回群となるような分解で単位群まで分解できれば
巡回群で不変となるラグランジュ分解式を反復適用して
ベキ根による方程式の求解が可能となる
この論理が大阪ヤンキーには11年理解できないまま
まず山に登れ 富士山頂までいくケーブルカーなんか
いつまでたってもできゃしないぞ

1104:132人目の素数さん
23/03/04 16:07:01.16 XPxmp+Zy.net
自分の数学の水源を高くする、とは
自分が高い位置に上る、という意味
もし、自分は上らずして、高い位置に立った人が
自分にも水を配給するよう水道路を整備してくれ、
というのであれば
まず、ジャンピング土下座しろ

1105:132人目の素数さん
23/03/04 16:08:18.40 XPxmp+Zy.net
1がダメなのは、ウマシカの癖に、やたらと尊大で
ジャンピング土下座ができないこと
大阪ヤンキーは、
他人に「ガンつけた」とかいって
凹ることしか楽しみのないクズ

1106:132人目の素数さん
23/03/04 16:08:52.21 XPxmp+Zy.net
東京勝利!
大阪敗北!

1107:1001
Over 1000 Thread.net
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 722日 6時間 15分 39秒

1108:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています


最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch