21/03/19 10:41:24.45 pI96vqfG.net
なんで2秒考えてみないんだろ
1021:132人目の素数さん
21/03/19 10:42:44.79 aEkmMHXJ.net
無意味な問題ばかり出すなあ
このスレを埋めて終わらせるのが目的だろ
そんな事をしても
期待値npを知らなかった事はずっと語り継がれるのによwww
1022:132人目の素数さん
21/03/19 10:48:28.11 Vudaq87h.net
>>979
subfactorialって初めて聞きました。
便利な公式を教えていただいたので、早速、関数化して保存。
subfactorial <- function(n,k){
j=0:k
p=sum((-1)^j*choose(k,j)*factorial(n-j)/factorial(n))
list(MASS::fractions(p),p)
}
動作確認
> subfactorial(9,9)
[[1]]
[1] 16687/45360
[[2]]
[1] 0.3678792
すでにn=9で1/eに近い
> exp(-1)
[1] 0.3678794
1023:132人目の素数さん
21/03/19 11:11:22.40 Vudaq87h.net
>>982
2秒で暗算は無理
1048576 / 9765625
1024:132人目の素数さん
21/03/19 11:18:06.42 3qomq5ao.net
もう次スレも要らないからな
1025:132人目の素数さん
21/03/19 11:19:20.13 Vudaq87h.net
>>981
発展問題
前日と同じ菓子を配られた子供は配った人を罵倒するという。
罵倒する子供の数の期待値とその95%信頼区間を求めよ。
1026:132人目の素数さん
21/03/19 11:27:45.18 xzrc/pzm.net
なんだ
ホントにわからなかったのか
1027:132人目の素数さん
21/03/19 11:32:51.56 KmSSoSqp.net
プログラムおじさん、
1/1+1/2+・・・+1/n
は収束するのか発散するのか、収束するならいくつになるのか教えてください
私立医でも解ける問題なので簡単だと思いますが
1028:132人目の素数さん
21/03/19 11:35:06.93 fYDXUHhE.net
>>987
np=2
1029:132人目の素数さん
21/03/19 11:38:43.06 Vudaq87h.net
>>989
プログラムで解いてみました。
> VGAM::zeta(1)
[1] Inf
1030:132人目の素数さん
21/03/19 11:45:41.41 KmSSoSqp.net
>>991
どんなプログラムですか?
あと私立医でも紙とペンで解けますけど、あなたはできないんですか?
1031:132人目の素数さん
21/03/19 11:49:57.30 aEkmMHXJ.net
自称医者だしなあ
正体は中卒の発達障害の爺さんだよ
1032:132人目の素数さん
21/03/19 12:04:02.89 CKEoWJo3.net
>>964
確認だが引いた後に等比数列の形になる式の計算は丁寧に載せたんだから「なんで辺々引いた式が成り立つのか分からない」ってことでいいか?
だとしたら第1にその部分は1次不定方程式で辺々引く計算と全く同じなのになんでそっちが分かって文字がa_nとa_(n+1)になると分からなくなるの?
そして本当にそれが分からないんだとしたら連立方程式をいまいち理解していないのかも?
x+y=1…①
x-y=0…②
と連立方程式があった時に①+②や①-②の式が成り立つことが保証されるのは
①,② (①,②が成り立っている)⇒①+②や
①,②⇒①-②
が成り立つからだ。①,②はx,yについての条件である時点で当然「成り立ってる等式」だからね
原始的にはA=a B=bが成り立つ時A+B=a+bが成り立つと言ってるだけ
で>>963における①は問題文で与えられている漸化式で、②は明らかに常に成り立つ計算式だから、当然2つとも成り立っている
1033:132人目の素数さん
21/03/19 12:28:33.22 kblq5sn9.net
次スレを
スレリンク(math板)
1034:132人目の素数さん
21/03/19 12:52:12.65 KmSSoSqp.net
他のスレでは元気に書き込みしてるようですが、>>992に答えてもらえないのは何なんでしょう?
1035:132人目の素数さん
21/03/19 13:39:17.35 kblq5sn9.net
>>980
(補足)
整数部分(?) 6N + nn + 1 が 3で割り切れない、すなわち
nn ≠ -1 (mod 3)
となる件
奇素数p で割り切れない剰余 {1,2,…,p-1} のうち
≡ x^2 の形に書けるもの(平方剰余) と書けないもの(非剰余)が同数
(p-1)/2 個ずつあります。
もし -1 が平方剰余ならば、±x のペアで平方剰余になるので、
(p-1)/2 = 2q, ∴ p = 4q + 1.
p=3 はこの形ではないので、-1 は非剰余になります。 (終)
1036:132人目の素数さん
21/03/19 14:24:57.20 4aTcVMu9.net
プログラムおじさんはエセ医者の社会の底辺
1037:132人目の素数さん
21/03/19 14:35:02.98 aEkmMHXJ.net
次スレにもプログラムキチガイが出るんだろうなあ
1038:132人目の素数さん
21/03/19 14:35:36.15 aEkmMHXJ.net
1000ならプログラムキチガイが消えていなくなる
1039:1001
Over 1000 Thread.net
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 33日 18時間 57分 15秒
1040:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています