高校数学の質問スレ Part410at MATH
高校数学の質問スレ Part410 - 暇つぶし2ch998:132人目の素数さん
21/03/19 00:23:31.46 v+Slg1NG.net
>>959
> URLリンク(imgur.com) こういう式です
それを特性方程式(これは線形代数等に出てくる用語)と呼ぶのは、受験業界造語。
a_{n+1}=f(a_n)
という形の漸化式を少しでも簡単なものに帰着しようとするというのが方針。
f(x)=xの解aはfの不動点と呼ばれるものだが、不動点が0だと少しは簡単になるはず。というわけで、
fの不動点aを用いて、b_n=a_n-a, g(x)=f(x+a)-aとおくと、
b_{n+1}=g(b_n)であり、gは0を不動点に持つ。
で、少しは簡単になるでしょ。という話。

999:132人目の素数さん
21/03/19 01:07:44.90 Z3BYyuvP.net
>>960
引き算してなぜ導けるのかわからないですね…
URLリンク(imgur.com)
画像では変形前から変形後の式を引けば特性方程式が出てくるとあります、これが理解できれば特性方程式を引けば変形後の式を導けることが言えますがわかりません^^;;
>>961
高校レベルでお願いします😢

1000:132人目の素数さん
21/03/19 02:42:09.10 CKEoWJo3.net
>>962
辺々引き算してるだけだよ?
>>960の最後の方の1次不定方程式の例(もう習ったのでは?)の方は分かる?
後具体例で理解した方がいい
a_(n+1)=2a_n +1…①と
-1=2(-1)+1…②が同時に成り立つならば※実際に計算してみると後者の等式は成り立ってるよね
辺々引くことによって ※いわゆる連立。①-②。
a_(n+1)-(-1)=(2a_n-2(-1))+(1-1)
(a_(n+1)+1)=2(a_n+1)
ここで左辺と右辺の括弧内の形が(a_○ +1)で共通しているから等比数列に帰着する。遡って、共通したのは②のところでx=2x+1を成り立たせる数x=-1を使ったから。当然ながら1=2・0+1を①から引いても共通した形にはならない

1001:132人目の素数さん
21/03/19 05:39:35.72 Z3BYyuvP.net
>>963
「①と②が同時に成り立つならば辺々引いて等比数列の形になる」の部分がわからないのですが…これは連立方程式のどの辺りの知識が足りないのか。。
等比数列の形に変形したいときに、成り立たなければならない式が1と2であることは理解できます

1002:132人目の素数さん
21/03/19 05:43:07.97 kblq5sn9.net
>>953
 e = Σ[k=0,∞] 1/(k!)  を使う。   >>954
 0 < e*n! - Σ[k=0,n] n! / k!
 = Σ[k=n+1,∞] 1/{(n+1)(n+2)…k}
 < Σ[k=n+1,∞] 1/(n+1)^{k-n}     (← 等比級数)
 = 1/n,
ここで
 Σ[k=0,n] n! / k! = 6N + n(n-1) + n + 1 ≡ ±1  (mod 3)
k≦n-3 のとき 6の倍数となるのがミソである。
 cos(2π(1/3 + 1/3n)) < (与式) < cos(2π(1/3 - 1/3n)),
 cos(2π/3) - 2π/3n < (与式) < cos(2π/3) + 2π/3n,
 -1/2 - 2π/3n < (与式) < -1/2 + 2π/3n,
 (与式) → cos(2π/3) = -1/2,   (n→∞)

1003:132人目の素数さん
21/03/19 05:50:48.40 Z3BYyuvP.net
例の一次方程式はわかりますが漸化式の計算に関係があるかは全く…

1004:132人目の素数さん
21/03/19 05:52:09.19 Z3BYyuvP.net
一次不定方程式、間違えました

1005:132人目の素数さん
21/03/19 07:54:18.18 Vudaq87h.net
>>944
客とソープ嬢の数が同じ場合は2日続けてソープに行った場合に全員が前日と別のソープ嬢に当たる確率はほぼ1/eで
これは10人でも100人でも確率は大差ないってことになるな。
スレ的には教室で席替えの問題にした方がいいな。

1006:132人目の素数さん
21/03/19 08:17:02.75 Vudaq87h.net
>>968
2020年12月、文部科学大臣の会見でこれまで40人だった小学校のクラスの上限人数を全国で35人以下に引き下げることが発表されました。
URLリンク(toyokeizai.net)
こういう問題になるかな。
一クラス35人の教室で次の学期は席替えをすることになりました。
席を無作為に選ぶとき、全員が今の席と異なる席に割り当てられる確率はいくらでしょう?

1007:132人目の素数さん
21/03/19 08:28:24.54 3qomq5ao.net
荒らしに構うな

1008:132人目の素数さん
21/03/19 08:29:11.84 3qomq5ao.net
あ、それとも本人か?

1009:132人目の素数さん
21/03/19 08:33:39.50 aEkmMHXJ.net
同じような問題の繰り返し
1年後も同じ事していそう
そんな事しても期待値npを知らなかった事実は消えはしない

1010:132人目の素数さん
21/03/19 08:35:49.68 kp7LJ3I/.net
>>962
最初の質問のときに自分で係数比較って言ってるじゃん
a_(n)とa_(n+1)の係数はいじっていないんだから辺々引き算したらそれらの項は消えて定数項を比較するだけの方程式が残る

1011:132人目の素数さん
21/03/19 08:38:38.21 1nxMx/T0.net
しっくりこない人なのかな?

1012:132人目の素数さん
21/03/19 08:46:05.14 kblq5sn9.net
n人の野球チームで
ちょうどk人が前の試合とは異なるポジションになる確率は
 p(k) = C[n,k] (!k) / n! = {1/(n-k)!}Σ[j=0,k] (-1)^j / j!,
!k は subfactorial で
 !0 = 1,
 !1 = 0,
 !2 = 1,
 !3 = 2,
 !4 = 9,
 !5 = 44,
 !6 = 265,
 !7 = 1854,
 !8 = 14833,
 !9 = 133496,
URLリンク(oeis.org) を参照

1013:132人目の素数さん
21/03/19 08:56:05.05 aEkmMHXJ.net
そんな問題解く暇あるなら早くリクエストに答えろよ
↓↓↓
862:132人目の素数さん 2021/03/18(木) 16:15:56.49 ID:7H5ZKplv
>>861
すごいプログラムですね。
999999999999までの自然数の中でピタゴラス数の組み合わせが最も多いのはいくつか教えてよ。
そのプログラム使えば分かるんでしょ?

1014:132人目の素数さん
21/03/19 08:59:00.67 aEkmMHXJ.net
プログラムキチガイ
PCじゃ解けないから、面白い問題スレに書き込んでヒント貰おうとしているwww
↓↓↓
151:132人目の素数さん 2021/03/19(金) 01:45:06.97 ID:/qXspel8
某スレより
問:999999999999以下で最も多くの種類のピタゴラス三角形の底辺となりうる数は何か?
解説:ピタゴラス三角形とはご存じの通り、辺長がいずれも正整数の直角三角形のことであるが、
例えば 24 は (24,7,25),(24,10,26),(24,32,40),(24,70,74),(24,143,145) の5種類のピタゴラス三角形の底辺となりうる。
(ここで「底辺」は斜辺でない辺のいずれかを指す)
24未満の正整数で5種類以上のピタゴラス三角形の底辺となりうる数はないので、
「24以下で最も多くの種類のピタゴラス三角形の底辺となりうる数は何か?」の解は24である。
上の問いは、同様のことを1兆未満の正整数で求めよというもの。
計算機で総当たりするより理詰めで解く方が向いていると思ったのでこちらのスレに移動してみる。

1015:132人目の素数さん
21/03/19 09:05:49.41 3qomq5ao.net


1016:132人目の素数さん
21/03/19 09:20:2


1017:6.49 ID:kblq5sn9.net



1018:132人目の素数さん
21/03/19 10:01:41.07 YuF58Im2.net
>>965
なんか手品を見ているようです。
ありがとうございます

1019:132人目の素数さん
21/03/19 10:31:17.27 fYDXUHhE.net
応用(?)問題
5種類の菓子が沢山あって無作為に選んだ菓子を子供10人に1日1回1人1個ずつ配る。
10人全員に前日と違う種類の菓子が配られる確率はいくらか?

1020:132人目の素数さん
21/03/19 10:41:24.45 pI96vqfG.net
なんで2秒考えてみないんだろ

1021:132人目の素数さん
21/03/19 10:42:44.79 aEkmMHXJ.net
無意味な問題ばかり出すなあ
このスレを埋めて終わらせるのが目的だろ
そんな事をしても
期待値npを知らなかった事はずっと語り継がれるのによwww

1022:132人目の素数さん
21/03/19 10:48:28.11 Vudaq87h.net
>>979
subfactorialって初めて聞きました。
便利な公式を教えていただいたので、早速、関数化して保存。
subfactorial <- function(n,k){
j=0:k
p=sum((-1)^j*choose(k,j)*factorial(n-j)/factorial(n))
list(MASS::fractions(p),p)
}
動作確認
> subfactorial(9,9)
[[1]]
[1] 16687/45360
[[2]]
[1] 0.3678792
すでにn=9で1/eに近い
> exp(-1)
[1] 0.3678794

1023:132人目の素数さん
21/03/19 11:11:22.40 Vudaq87h.net
>>982
2秒で暗算は無理
1048576 / 9765625

1024:132人目の素数さん
21/03/19 11:18:06.42 3qomq5ao.net
もう次スレも要らないからな

1025:132人目の素数さん
21/03/19 11:19:20.13 Vudaq87h.net
>>981
発展問題
前日と同じ菓子を配られた子供は配った人を罵倒するという。
罵倒する子供の数の期待値とその95%信頼区間を求めよ。

1026:132人目の素数さん
21/03/19 11:27:45.18 xzrc/pzm.net
なんだ
ホントにわからなかったのか

1027:132人目の素数さん
21/03/19 11:32:51.56 KmSSoSqp.net
プログラムおじさん、
1/1+1/2+・・・+1/n
は収束するのか発散するのか、収束するならいくつになるのか教えてください
私立医でも解ける問題なので簡単だと思いますが

1028:132人目の素数さん
21/03/19 11:35:06.93 fYDXUHhE.net
>>987
np=2

1029:132人目の素数さん
21/03/19 11:38:43.06 Vudaq87h.net
>>989
プログラムで解いてみました。
> VGAM::zeta(1)
[1] Inf

1030:132人目の素数さん
21/03/19 11:45:41.41 KmSSoSqp.net
>>991
どんなプログラムですか?
あと私立医でも紙とペンで解けますけど、あなたはできないんですか?

1031:132人目の素数さん
21/03/19 11:49:57.30 aEkmMHXJ.net
自称医者だしなあ
正体は中卒の発達障害の爺さんだよ

1032:132人目の素数さん
21/03/19 12:04:02.89 CKEoWJo3.net
>>964
確認だが引いた後に等比数列の形になる式の計算は丁寧に載せたんだから「なんで辺々引いた式が成り立つのか分からない」ってことでいいか?
だとしたら第1にその部分は1次不定方程式で辺々引く計算と全く同じなのになんでそっちが分かって文字がa_nとa_(n+1)になると分からなくなるの?
そして本当にそれが分からないんだとしたら連立方程式をいまいち理解していないのかも?
x+y=1…①
x-y=0…②
と連立方程式があった時に①+②や①-②の式が成り立つことが保証されるのは
①,② (①,②が成り立っている)⇒①+②や
①,②⇒①-②
が成り立つからだ。①,②はx,yについての条件である時点で当然「成り立ってる等式」だからね
原始的にはA=a B=bが成り立つ時A+B=a+bが成り立つと言ってるだけ
>>963における①は問題文で与えられている漸化式で、②は明らかに常に成り立つ計算式だから、当然2つとも成り立っている

1033:132人目の素数さん
21/03/19 12:28:33.22 kblq5sn9.net
次スレを
スレリンク(math板)

1034:132人目の素数さん
21/03/19 12:52:12.65 KmSSoSqp.net
他のスレでは元気に書き込みしてるようですが、>>992に答えてもらえないのは何なんでしょう?

1035:132人目の素数さん
21/03/19 13:39:17.35 kblq5sn9.net
>>980
(補足)
整数部分(?) 6N + nn + 1 が 3で割り切れない、すなわち
 nn ≠ -1 (mod 3)
となる件
 奇素数p で割り切れない剰余 {1,2,…,p-1} のうち
 ≡ x^2 の形に書けるもの(平方剰余) と書けないもの(非剰余)が同数
 (p-1)/2 個ずつあります。
 もし -1 が平方剰余ならば、±x のペアで平方剰余になるので、
 (p-1)/2 = 2q, ∴ p = 4q + 1.
 p=3 はこの形ではないので、-1 は非剰余になります。 (終)

1036:132人目の素数さん
21/03/19 14:24:57.20 4aTcVMu9.net
プログラムおじさんはエセ医者の社会の底辺

1037:132人目の素数さん
21/03/19 14:35:02.98 aEkmMHXJ.net
次スレにもプログラムキチガイが出るんだろうなあ

1038:132人目の素数さん
21/03/19 14:35:36.15 aEkmMHXJ.net
1000ならプログラムキチガイが消えていなくなる

1039:1001
Over 1000 Thread.net
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 33日 18時間 57分 15秒

1040:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています


最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch