21/03/16 01:10:49.33 HL4mUj/J.net
-1 < p < 1 < q,
P (p, 1/(pp-1))
Q (q, 1/(qq-1))
とおく。
Pでの接線の傾き f '(p) = - 2p/(1-pp)^2,
Qでの接線の傾き f '(q) = - 2q/(qq-1)^2,
これらが等しいとき
(1-pp)^2 = 2kp,
(qq-1)^2 = 2kq,
一方、AB の傾きは
m = [f(q)-f(p)]/(q-p) = (p+q)/[(1-pp)(qq-1)]
PQが最短のとき、PQと両接線とは直交する。
- f '(p) = - f '(q) = 1/m,
∴ kk = (p+q)/(2√pq),
う~む