21/03/11 20:45:55.28 JY2ui+vd.net
>>662
B[n,p] ~ C[n,k] p^k (1-p)^(n-k)
の最大点を求めるため、対数をとってkで微分すると、
- log(k/p) + log((n-k)/(1-p)) - 1/(2k) + 1/(2(n-k))
+ 1/(12k^2) - 1/(12(n-k)^2) + O(1/k^4)
ここで k ≒ (n+1)p - 1/2 とし、スターリングの近似式を使った。
最大点では 0 となる。
一方、k = (n+1)p - 1/2 + ⊿k とおくと
-log(k/p) + log((n-k)/(1-p)) - 1/(2k) + 1/(2(n-k))
+ 1/(8k^2) - 1/(8(n-k)^2)
≒ - {1/(k+1/2) + 1/(n-k+1/2)}⊿k
= - {1/p + 1/(1-p)}/(n+1)・⊿k
= - 1/{(n+1)p(1-p)}・⊿k
これが
1/(24k^2) - 1/(24(n-k)^2)
にほぼ等しいから
⊿k = - (1/2 - p)/{12(n+1)p(1-p)}.