21/08/13 15:19:48.19 nCXCDdpU.net
>>669
>確率列 {p_n} の極限が1になるということ
|その意味は
|「あらかじめ用意された可算個の実数列から2個、3個、4個、・・・と選んで
| 箱入り無数目の方法で中身あてを行った場合
| 当たる確率が1/2,2/3,3/4,…と増えていって、
| 1に限りなく近づく」
|と同じかい?違うのかい?
>ここは違う。あらかじめ可算無限個の実数列を用意するのではなく、
>時枝解法のように有限個の実数列を用意して
>箱の中を当てることを考えるようなことを
>用意する実数列の本数を 2、3、4、5、… と
>順々に増やしながらし続けて
>可算無限個の実数列を用意する状況へと近付けて行き、
>確率列 {p_n} の極限1を取る
そう答えるだろう、とおもった
ただ、「あらかじめ可算無限個の実数列を用意する」としないと
初期値だと主張できなくなるので、困るのではないか
その都度順々に増やす、と言い切った瞬間
「それ、毎度毎度変化する確率変数だよね?」
といわれてしまって罠にはまる
だから「あらかじめ可算無限個の実数列を用意する」んだよね?
と問うたんだが、やっぱりそういうことは全然考えてなかったんだね
迂闊だね