箱入り無数目を語る部屋at MATH
箱入り無数目を語る部屋 - 暇つぶし2ch122:132人目の素数さん
21/04/20 00:48:15.86 1JY8TBfq.net
有限列では必ず成り立つ性質が、無限列になった瞬間に成立しなくなる例は枚挙に暇がない。
・実数の有限列には必ず最大値があるが、有限列から極限を取っても、
「ゆえに、実数の無限列にも必ず最大値がある」とは言えない。
・1,2,…,nという数列には末尾があるが、極限を取っても
「ゆえに、1,2,3,… という無限列には末尾がある」とは言えない。
・有限列だと数当ては当たらないが、無限列だと数当ては当たるので、
有限列の極限を取っても、「ゆえに、無限列でも当たらない」とは言えない。
レーヴェンハイム・スコーレムの定理を使えば、
「実数の無限列にも必ず最大値がある」と言えるようになるのか?
いや、ならない。つまり、このケースではレーヴェンハイム・スコーレムの定理が適用できない。
レーヴェンハイム・スコーレムの定理を使えば、
「1,2,3,… という無限列には末尾がある」と言えるようになるのか?
いや、ならない。つまり、このケースではレーヴェンハイム・スコーレムの定理が適用できない。
レーヴェンハイム・スコーレムの定理を使えば、
「無限列でも当たらない」と言えるようになるのか?
いや、ならない。つまり、このケースではレーヴェンハイム・スコーレムの定理が適用できない。
レーヴェンハイム・スコーレムの定理が適用できない対象に対して
レーヴェンハイム・スコーレムの定理をゴリ押ししても、時枝記事を否定することはできない。
バカの考え、休むに似たり。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch