高校数学の質問スレPart409at MATH
高校数学の質問スレPart409 - 暇つぶし2ch1027:132人目の素数さん
21/02/13 01:44:45.39 rcfUzmW5.net
>>974
A(0, 1) B(0, 0) C(1, 0) P(0, 1-t) と置ける。
D(2, 2) のとき BD=2√2, Q(1+t, 2t)  l^2 = (1+t)^2 + (1-3t)^2,
D(-1, -1) のとき BD=√2, Q(1-2t, -t)  l^2 = (1-2t)^2 +1


1028:.



1029:132人目の素数さん
21/02/13 07:49:55.53 /VWNGmtN.net
円の接線の方程式
(x0-a)(x-a)+(y0-b)(y-b)=r^2ってなんで(x-a)とか(y-b)になる?
原点oの円の接線の方程式で考えてそこから平行移動させるって考え方だけど、yの方にマイナスつくのわかりません。
平行移動わからない…

1030:132人目の素数さん
21/02/13 07:58:09.45 R+/eZve4.net
>>984
元の点P(x,y)を
x軸方向にa
y軸方向にb
平行移動した点をQ(X,Y)とすると
X=x+a
Y=y+b
これを変形すると
x=X-a
y=Y-b
これを利用しているだけ

1031:132人目の素数さん
21/02/13 08:33:45.03 /VWNGmtN.net
>>985
原点oの円の接線つくるまで簡単だけどそっから平行移動するときxやyを、特にyを(y-b)にするの謎過ぎる

1032:132人目の素数さん
21/02/13 08:39:01.69 R+/eZve4.net
>>986
平行移動の考え方は
円や直線や放物線、どの場合も全部同じ
円 x^2+y^2=r^2 上の点(x0,y0)における接線は
x0x+y0y=r^2・・・(1)
これらを
x軸方向にa
y軸方向にb
平行移動して
円周上の点が
(x,y)→(X,Y)
接点が
(x0,y0)→(X0,Y0)に移ったとすると
X=x+a
Y=y+b
X0=x0+a
Y0=y0+b
これを変形すると
x=X-a
y=Y-b
x0=X0-a
y0=Y0-b
これを(1)に代入すると
(X0-a)(X-a)+(Y0-b)(Y-b)=r^2
となり平行移動した接線の式が得られる
後は大文字を小文字に直せばいい

1033:132人目の素数さん
21/02/13 08:45:01.90 /jjy1Ow+.net
>>986
疑問に思っている部分は円とは関係ないわけだよね?
ある図形を平行移動した図形上の点は元に戻したら元の図形を表す方程式を満たすでしょ?
元に戻すというのが(x-a,y-b)
これが元の図形を表す方程式を満たす
また、そうなるような点の集まりが平行移動後の図形だから(x-a,y-b)を元の方程式に代入したものが平行移動後の図形を表す方程式ってことになる

1034:132人目の素数さん
21/02/13 08:49:11.98 /VWNGmtN.net
>>987
平行移動後のXで統一するのか、上手く言葉にできないけど詰まってた部分が判明したありがとう

1035:132人目の素数さん
21/02/13 09:14:15.52 /VWNGmtN.net
>>988
やっぱり(x-a)と(x-b)代入して平行移動後の図形を表す方程式って話が難しい…

1036:132人目の素数さん
21/02/13 09:24:59.26 R+/eZve4.net
>>990
元の図形を表す点が(x,y)
このxとyの関係を表すのが関数の式
今回は原点中心、半径rの円の接線
この接線の方程式は既に分かっている

平行移動後の図形を表す点が(X,Y)
このXとYの関係
つまり平行移動後の接線の方程式を知りたい
そこで
x=X-a
y=Y-b
x0=X0-a
y0=Y0-b
を既に分かっている元々の接線の方程式に代入すると
小文字のx,yが消えて
大文字のX,Yが残り、XとYの関係が分かる
つまり平行移動した後の接線の方程式が得られる事になる

1037:132人目の素数さん
21/02/13 09:31:39.20 zElpRBTv.net
>>990
図を描けよ

1038:132人目の素数さん
21/02/13 09:45:10.92 /VWNGmtN.net
>>991
なるほど、完全にわかりました☺感謝

1039:イナ
21/02/13 10:14:56.66 K/GMctqc.net
>>932
>>974
l^2=(1+t)^2+{2t-(1-t)}^2
=t^2+2t+1+9t^2-6t+1
=10t^2-4t+2

1040:132人目の素数さん
21/02/13 19:05:09.17 AvbTRI8h.net
任意の整数で割って1余る数同士の積も、その整数で割った余りは1になる。これはどういうことですか?

1041:132人目の素数さん
21/02/13 19:28:16.61 rcfUzmW5.net
任意の整数kに対し
 (ak+1)(bk+1) = (abk+a+b)k + 1,
ということ

1042:132人目の素数さん
21/02/13 19:44:29.66 rcfUzmW5.net
次スレ
スレリンク(math板)

1043:132人目の素数さん
21/02/13 19:46:52.34 HFgOIDBU.net
次スレはもういらねーよ

1044:132人目の素数さん
21/02/13 19:47:11.70 HFgOIDBU.net
銀河鉄道999

1045:132人目の素数さん
21/02/13 19:47:36.56 HFgOIDBU.net
千 昌夫

1046:1001
Over 1000 Thread.net
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 52日 10時間 27分 7秒

1047:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています


最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch