高校数学の質問スレPart409at MATH
高校数学の質問スレPart409 - 暇つぶし2ch639:132人目の素数さん
21/01/27 17:35:54.98 knjIwEAx.net
a[10] = 18 のとき、a[1]=1 かつ a[2] ~ a[9] は密に並ぶ。
例えば 2~9 とか 10~17 とか。

640:132人目の素数さん
21/01/27 17:41:27.42 9yIZwvWa.net
コレなんだよ
もうとっくに答え出てる下らない問題にいつまでもいつまでも固執してスレ荒らす



641:ホントに迷惑



642:132人目の素数さん
21/01/27 18:06:59.62 knjIwEAx.net
>>609
題意から
 a[1] ≧ 1,
 a[n/2 +1] ≧ a[n/2] + 1,
 a[n/2 +2] ≧ a[n/2 -1] + 3,
  ・・・・
 a[n-2] ≧ a[3] + (n-5),
 a[n-1] ≧ a[2] + (n-3),
辺々たして
 x ≧ y - a[n] + (n/2 - 1)^2 + 1,
題意より
 x < y,
∴ a[10] ≧ (1/4)nn -n +3,
等号成立は a[1]=1 かつ a[2]~a[n-1] は密。

643:132人目の素数さん
21/01/27 18:54:14.45 Ql1rvBGr.net
密は避けて

644:132人目の素数さん
21/01/27 19:04:33.01 xjAWv0SP.net
>>616
線形回帰での予想の証明ありがとうございます。

645:132人目の素数さん
21/01/27 21:50:00.83 TkpteuA7.net
>>603
御託はいいから医師免許はよ。

646:132人目の素数さん
21/01/27 23:10:25.70 ygEuqTKD.net
a>0, h>1 とするす。
点(a,0,h)から球面x^2+y^2+z^2=1へ引いた接線群は円すい面を成しますが、
この円すい面とxy平面との交戦であるだ円の方程式はどのように求められますか

647:イナ
21/01/28 00:39:05.00 ldjp8BiZ.net
>>590
>>620
長軸の長さのほうが簡単に出そう。
短軸の長さのほうが難しそう。
0<a≦1のとき
a≧1のとき
に分けてxz平面を描く。
a≧1のとき2つの接線とx軸の交点は、
(a/(1+h),0,0)と、
もう一つを(-b,0,0)とおくと、
長軸の長さはa/(1+h)+b

648:132人目の素数さん
21/01/28 04:17:27.98 pYEJmT4g.net
>>621
イナさんこれできる?
3X+2y≦2008 を満たす0以上の整数の組(X、y)の個数を求めよ。
俺はできませんでしたよ。

649:369
21/01/28 04:31:55.55 dXxfBcBc.net
>>617
蜂蜜はセーフですか!?

650:132人目の素数さん
21/01/28 07:29:40.56 7P00nNRm.net
>>622
横レスだが、指折り数えたら 337010個

651:132人目の素数さん
21/01/28 07:45:46.75 7P00nNRm.net
>>624
数値を変えても数えられるように関数化
f <- function(a,b,n){
sub <- function(x,y) a*x + b*y <= n
x=0:ceiling(n/a)
y=0:ceiling(n/b)
xy=expand.grid(x,y)
sum(mapply(sub,xy[,1],xy[,2]))
}
f(a=3,b=2,n=2008)
f(a=3,b=7,n=2021)
結果
> f(a=3,b=2,n=2008)
[1] 337010
> f(a=3,b=7,n=2021)
[1] 97778

652:132人目の素数さん
21/01/28 07:52:37.97 0Bbu5NRk.net
光源と長軸を結ぶ平面をα、長軸の2端点のうち光源Pに近い方をA、遠い方をB、線分PB上の点CをPC=PAととる
ABの中点をM、PMとACの交点をNとする
AN/CN=AM/BM PB/PC = PB/PA
ここで単軸/長軸=sinθとおくとAN/CN=(1+cosθ)/(1-cosθ)=cot(θ/2)
∴ 単軸/長軸=2cot(θ/2)/(1+(cot(θ/2))^2)z=2PA×PB/(PB^2+PA^2)

653:132人目の素数さん
21/01/28 08:09:24.67 3BO5AXoU.net
アホだという自覚があるならなんで数学やってるんですか?
なんで医者やってるんですか?

654:132人目の素数さん
21/01/28 08:48:15.59 0Bbu5NRk.net
>>626
訂正
× 短軸/長軸=
◯ 短軸の現像の長さ/長軸の現像の長さ

655:132人目の素数さん
21/01/28 08:52:51.06 pVp8BDkr.net
P (a,0,h)
X (x,y,z)
OP = √(aa+hh),
OP方向にp軸を取る。
 p = (ax+hz)/√(aa+hh),
XからOPに下した垂線の足をHとする。
 √{(aa+hh)/(aa+hh-1)}・PH = PX,
2乗して
 (aa+hh)/(aa+hh-1)・(OP - p)^2 = (x-a)^2 + y^2 + (z-h)^2,
よって
 y^2 = 1/(aa+hh-1)・{a(x-a)+h(z-h)}^2 - (x-a)^2 - (z-h)^2
  = 1/(aa+hh-1)・{-(hh-1)(x-a)^2 +2ah(x-a)(z-h) +


656:(1-aa)(z-h)^2}, ここで z=0 とおくと xy断面は  1/(aa+hh-1)・{(hh-1)x + a}^2 + (hh-1)y^2 = h^2, 長半径 h√(aa+hh-1)/(hh-1), 短半径 h/√(hh-1), 面積  πhh√(aa+hh-1)/(hh-1)^{3/2},



657:132人目の素数さん
21/01/28 08:57:01.77 pVp8BDkr.net
0 ≦ 2y ≦ 2008 - 3X
を満たす y は 0 から [(2003-3X)/2] まで
  [ (2008-3X)/2 ] + 1 個。
0 ≦ X ≦ 669 で足して 337010

658:132人目の素数さん
21/01/28 08:58:48.00 8i6B8AWw.net
( ・∀・)< 検算
sum 1+(floor[(1/2)(2008-3*floor[n])]), n=0 to floor[2008/3]
URLリンク(www.wolframalpha.com)
端数の切り捨てに気をつけて、数列の和を計算するだけ

659:132人目の素数さん
21/01/28 09:04:15.87 8i6B8AWw.net
( ・∀・)< かぶった
X に [ ] は不要でしたね
おつです

660:132人目の素数さん
21/01/28 13:19:58.55 3iYQYqMk.net
>>627
いや、彼は医者のフリしてる医者コンプです。

661:132人目の素数さん
21/01/28 17:53:07.78 X3vGa1Bi.net
>>629
Xとは円錐面上の点ということですか?

662:369
21/01/28 18:02:46.17 dXxfBcBc.net
このスレを眺めているだけでも
高校数学の深さが分かるわ。
"大学への数学" とか受験雑誌を
大人になっても読んで投稿する人が
いるというのも気持ちが分かる。
文明人の戯れ。

663:132人目の素数さん
21/01/28 19:12:49.80 pVp8BDkr.net
>>634
うむ。

664:132人目の素数さん
21/01/28 20:20:18.60 3iYQYqMk.net
受験に固執してるいい歳こいた大人って恥ずかしいね

665:132人目の素数さん
21/01/28 20:22:46.15 GuUIfVpy.net
現在が悲惨だから過去にすがりつきたいんだな

666:イナ
21/01/28 22:05:29.37 ldjp8BiZ.net
>>621
>>622
1から1005までの和-2,5,8,……1004の和
=(1から1005までの和)×(2/3)
=(2/3)×(1006/2)×1005
=(2/3)×503×1005
=1006×335
=335000+2010
=337010

667:132人目の素数さん
21/01/28 22:13:59.01 7P00nNRm.net
>>638
医学部落ちたのか?

668:132人目の素数さん
21/01/28 22:26:39.56 3iYQYqMk.net
>>640
過去に縋りたいんだね?

669:132人目の素数さん
21/01/28 22:28:19.20 3iYQYqMk.net
哀れだね。高校生相手にこんなマウントしか取れないなんて。
未来ある若者にちょっかい出すんじゃない。

670:132人目の素数さん
21/01/29 07:19:50.55 QcH0De8M.net
>>625
3X+2y≦nとして組みの個数をグラフにすると
URLリンク(i.imgur.com)
一般解は出せるのだろうか?
俺には出せないけど。
>640は
hit the nail on the head
というとこだろうな。

671:369
21/01/29 07:49:39.58 EjM6bS/Y.net
数学の問題において、
良い問題とはどのような物か?
君の主張とその根拠を述べよ。
    (Aランク大学 2021年度 末期)

672:369
21/01/29 11:07:09.59 EjM6bS/Y.net
この宇宙から全ての物質が無くなったとする。
この時、摩擦や重力は存在するか?
どのようにすれば、それを生み出して、
その存在を確認できるか?

673:132人目の素数さん
21/01/29 11:25:34.78 YzQ1c354.net
お前は孤独死の心配だけしてろ。

674:369
21/01/29 11:27:39.53 EjM6bS/Y.net
孤独でない死が存在するなら
ぜひとも見てみたいものだ。
ベッドで囲まれて孫たちは皆、若く元気で
そんな中、ただ独り己だけが死ぬ。
そっちの方がかえって孤独感が強まるだろ。 <


675:132人目の素数さん
21/01/29 11:31:37.09 YzQ1c354.net
家族はおろか5chでもまともに相手にされてない奴が?w
孫に囲まれて?w

676:132人目の素数さん
21/01/29 15:59:32.01 QcH0De8M.net
>>647
今はコロナで危篤状態にでもならないと面会できないので大変。
救急で絶叫認知老人を入院させると病棟看護師からブーイングがくる。
今まではこういう認知老人には夜間の付添を家族にお願いしていたけど今は不可能。
うちはオンライン面会できるけど、やっぱり対面とは違う。
子供の顔を忘れて認知が進んだという老人ホーム入居者のことを耳にした。

677:132人目の素数さん
21/01/29 16:33:15.47 YzQ1c354.net
>>649
ここ数学板なのに必死だな。

678:132人目の素数さん
21/01/29 17:45:13.18 EjM6bS/Y.net
>>648
w をつけても君の立場・発言が
誰かより上になるわけではないぞ。
俺は誰かに看取られる能力もないし、
その必要もない。
なぜなら、死に際に何人の身内に
囲まれていようと無意味だと知っているから。

679:132人目の素数さん
21/01/29 17:47:43.70 Ezongnx4.net
>>651
看取ってくれる身内なんかいないからこんなところで燻ってんだろ?w

680:132人目の素数さん
21/01/29 18:36:30.74 jDjS7awX.net
他人を馬鹿にするしか気晴らしがないとは惨めな話だ

681:132人目の素数さん
21/01/29 19:33:48.31 Ce5ls39L.net
いいから高校数学の話しよーぜ

682:132人目の素数さん
21/01/29 20:45:13.22 EjM6bS/Y.net
12枚のコインがある。
1枚は偽物で重さが異なる(また、重いか軽いかは不明である)
天秤を3回まで使って良い。
その1枚を見つけよ。 (ホグワーツ 2021 末期)

683:132人目の素数さん
21/01/29 21:35:08.80 eEr+S+ZY.net
ヘルプです。河合塾に通ってるものなのですが、前期のノートをなくしてしまって焦ってるんです。
この問題を教えてくれませんか?
<複素数と直線の問題>
xy平面上の直線y=mx+nは、z=x+yi、zバー=x-yiとして、複素数z、zバーで表すと、
z+α*zバー=β
の形になる。m=tanθたするとき、αを極形式で表せ。

684:132人目の素数さん
21/01/29 21:38:19.22 eEr+S+ZY.net
あと、もし河合塾出身の方いらっしゃったらなんですけど、チューターに基礎シリーズの問題を解答・ノートなしに聞きにいって、基礎シリーズのノート持ってこないと分からないって言われたりしたことあったりしますか?もってこいと言われたら今無くしてるのでやばいと思ってなかなか質問に行かないでいるのです。リアルな方で切実です。ちなみに私は関西のものです。

685:132人目の素数さん
21/01/29 21:38:42.27 XpAxQwWj.net
>>650
医学部落ちたのか?

686:132人目の素数さん
21/01/29 21:40:05.87 eEr+S+ZY.net
訂正
質問に行かないでいる→行けないでいる

687:132人目の素数さん
21/01/29 21:40:59.28 XpAxQwWj.net
>>655
昔からある問題
URLリンク(detail.chiebukuro.yahoo.co.jp)

688:132人目の素数さん
21/01/29 22:09:03.82 755eSSe/.net
>>658
医者のフリして楽しいか?

689:132人目の素数さん
21/01/29 22:16:43.30 d0ILbaii.net
はやく656にこたえてやれよ
複素数平面習ってないジジイども

690:132人目の素数さん
21/01/29 22:28:28.63 d0ILbaii.net
こたえはθ+π/2
簡単すぎて飲みかけのお茶ふいたわwww

691:132人目の素数さん
21/01/29 22:39:38.76 eEr+S+ZY.net
>>663
え....簡単?
3時間考えてしまいました。
どうやって解くんですか?
一応直線の式とかは理解してるつもりだったんですけど、理解不足だったのでしょうか?

692:132人目の素数さん
21/01/29 22:41:30.41 eEr+S+ZY.net
>>663
一応�


693:lは、zとzバーの式をαβの式に代入したんですけど、そしたらtanθ=(αの式)ってなって、途方に暮れてました。



694:132人目の素数さん
21/01/29 22:45:26.37 d0ILbaii.net
そのあとαをP+Qiとかでおいてみw

695:132人目の素数さん
21/01/30 02:14:33.78 6P3SEpd9.net
wolframalpha、∫₀¹が認識できるのはすごいな
URLリンク(i.imgur.com)
些末な話だけど↑の計算にも途中絶対値が出てくるんだが
高校数学において∫₀¹|x|dx=∫₀¹xdxとできる根拠って
その積分はグラフy=|x|のこの部分の面積である→その範囲では|x|=xである→その面積は∫₀¹xdxで表せる
っていう事になるのかね、形式的には。まあ断り無く積分範囲の符号を言って外して良いんだろうが

696:132人目の素数さん
21/01/30 05:34:14.39 yMsUUB1P.net
>>667


697:132人目の素数さん
21/01/30 05:47:50.22 6P3SEpd9.net
>>668
原始関数に積分範囲の端点を代入して計算するっていう高校数学の定積分の定義からは絶対値を直接外せないから、こういう時絶対値外してたっけ?って迷った話
なんなら俺高校の時も667の理屈付け(面積を経由しないと絶対値外せない?ってやつ)考えてた気がする

698:132人目の素数さん
21/01/30 05:50:47.28 yMsUUB1P.net
>>669
そもそも面積
そのあと原始関数
そして定積分という流れ

699:132人目の素数さん
21/01/30 05:52:46.78 6P3SEpd9.net
>>670
間違ってるが

700:132人目の素数さん
21/01/30 05:56:54.86 yMsUUB1P.net
>>671
掛け算の順序みたいな人ね

701:132人目の素数さん
21/01/30 06:06:34.25 6P3SEpd9.net
掛け算の順序も何もわざわざ高校数学のスレを選んで持ってきた話題で何度も高校数学において、形式的に、と言って意味が通じないのはただ論理的思考に乏しいだけだろ

702:132人目の素数さん
21/01/30 06:11:33.77 yMsUUB1P.net
>>673
ハイハイその通りでございます

703:132人目の素数さん
21/01/30 06:15:31.92 6P3SEpd9.net
なんだこいつは

704:132人目の素数さん
21/01/30 06:58:06.17 aQY//gU9.net
なんだチミは

705:132人目の素数さん
21/01/30 07:04:43.85 6RVBYVRY.net
伸びてると思ったらまたプロおじか

706:132人目の素数さん
21/01/30 09:22:31.14 cCWrWx5N.net
>>666
やっぱりわかりません。
tanθ=(1-α)/(1+α)となって、ここにp+qi を代入すると訳分からなくなりました。
もしかして図形的に解いたりするんですか?
(θ+Π/2ということは直角?)

707:132人目の素数さん
21/01/30 10:39:23.03 e5CpC9q+.net
>>656
z~ = x - yi = x - (mx+n)i = (1-mi)x - ni,
x = (z~ + ni)/(1-mi),
z = x + yi = x + (mx+n)i = (1+mi)x + ni
 = (1+mi)(z~ + ni)/(1-mi) + ni
 = {(1+mi)/(1-mi)}z~ + β
 = - α z~ + β,
α = - (1+mi)/(1-mi)
 = - {1 + (tanθ)i}/{1 - (tanθ)i}
 = - {cosθ + (sinθ)i}/{cosθ - (sinθ)i}
 = - e^{θi} / e^{-θi}
 = - e^{2θi}
 = e^{(π+2θ)i}
(大意)
zは傾角θの直線上にあるとする。
それを上下反転して 原点周りにπ+2θ回して
βだけ平行移動すると元に戻る。

708:132人目の素数さん
21/01/30 10:51:56.86 cCWrWx5N.net
>>679
できれば高校数学の範囲でご説明していただけませんか...?
何度もすいません。

709:132人目の素数さん
21/01/30 11:40:46.84 e5CpC9q+.net
オイラの公式
 e^{θi} = cosθ + (sinθ)i,
は高校数学の範囲だよね。
「原点の周りに 2θ回して」
と訂正

710:132人目の素数さん
21/01/30 13:58:45.91 yMsUUB1P.net
>>681
範囲外よ
範囲内はドモルガンの法則

711:132人目の素数さん
21/01/30 16:11:50.63 e5CpC9q+.net
オイラもとうとう外されたか・・・・

712:132人目の素数さん
21/01/30 16:17:19.86 aQY//gU9.net
もともと入ってねーぞアホ

713:132人目の素数さん
21/01/30 17:19:02.85 MHs8W3Ho.net
オイコラのう

714:complete idiot
21/01/30 18:13:03.01 PsXI5ypc.net
>>679
>{cosθ + (sinθ)i}/{cosθ - (sinθ)i}
複素数の割り算位、直接計算すれば?
 (cosθ + (sinθ)i)^2/((cosθ)^2+(sinθ)^2)
=(cosθ + (sinθ)i)^2
=cos2θ+(sin2θ)i
最後のところは、ド・モアブルとかいわなくてもフツーに加法定理でOK

715:132人目の素数さん
21/01/30 20:17:07.83 YWOQtOXf.net
ノーコーギーリーノーコーギーリー

716:132人目の素数さん
21/01/30 20:17:42.03 aQY//gU9.net
複素数の問題についてはむしろ加法定理よりもドモアブルのほうがフツーである

717:132人目の素数さん
21/01/30 20:25:26.64 aQY//gU9.net
なんでも解けりゃいいってもんじゃねーんだよタコが。高校数学の指導要領はどうなってて教科書でどのような問題が載っていて、高校生がどのような概念を取得しているのかそのくらい考慮して書けや。
たとえば{cosθ + (sinθ)i}/{cosθ - (sinθ)i}
なんかは、教科書でcosθ - (sinθ)iを極形式に直すっていう作業をやっていて、
それをふまえればcosθ - (sinθ)i=cos(-θ) + i sin(-θ) だから
{cosθ + (sinθ)i}/{cosθ - (sinθ)i}
={cosθ + (sinθ)i}/cos(-θ) + i sin(-θ) (教科書に載ってる作業)
=cos(θ+θ)+i sin(θ+θ)   (教科書に載ってるドモアブル)
=cos2θ+i sin2θ
とわかる。

718:369
21/01/30 20:42:46.84 8NTqI1Ks.net
>>431-433
受験生はこの考え方を
頭の隅に置いておけ。
本質から外れた言葉使いは
認識に混乱を及ぼす基となるかんね。
認識に誤りあらば、思考も誤りまする故。

719:132人目の素数さん
21/01/30 20:46:17.49 aQY//gU9.net
京大も入れなくて阪大も入れなくて神戸に行った人が本質とか

720:132人目の素数さん
21/01/30 21:00:28.43 /Cks/sHY.net
>>649
家にいても、年寄りは厳重に引きこもってて、今は人と会えないし、デイも感染が危ないから行かせてないし、受診も控えてて、認知が進んで家族の顔もわからなくなってるって。

721:イナ
21/01/31 00:24:03.90 M3QnnY4r.net
>>639
>>655
4枚ずつ天秤の左右に載せ、
等しければ残り2回の計量で、
残り4枚から重さが違う1枚を選ぶことができる。
4枚ずつ天秤の左右に載せ、
天秤が傾いた場合、
残り2回の計量で、
8枚のうちの1枚をみつけるには、
鼻の利く犬が必要。

722:132人目の素数さん
21/01/31 08:08:24.36 8UVmvibM.net
問題の質問ではないのですが
来月国立医学部受ける事になりましたが数学の才能が無さ過ぎて絶望しています
「東大に才能は必要ない」とか「たぶん勉強のやり方が悪い」と指摘する方もいますが都内の大手予備校の講師何人にも相談して
徹底して復習を繰り返し、毎週やるテストは何時間もかけて考えたりという勉強法を1年間の浪人生活で徹底してきました
ですが問題が解けません。
この問題でnx=θとおく発想が出てきませんでした。それさえわかれば後は周期で解けましたが…。
URLリンク(chie-pctr.c.yimg.jp)
基礎は徹底してるので数学の偏差値70前後ありますが難関大に受かる気が全くしません、こういう事を経験した人は何をして壁を越えたのか
また諦めたのかアドバイスお願いします

723:132人目の素数さん
21/01/31 08:21:19.89 eLyrQTPI.net
頭わるっ

724:132人目の素数さん
21/01/31 08:33:25.17 8UVmvibM.net
ですよね、今から自殺でもします

725:132人目の素数さん
21/01/31 13:06:46.76 1GtbAOjB.net
>>694
そういう経験ないから


726:アドバイスできんが 勉強法が後ろ向きすぎるから やればやるほど頭悪くなるだろう 基本的に予備校はそういうもんだが



727:132人目の素数さん
21/01/31 14:00:53.15 eLyrQTPI.net
そもそも三角関数の位相を軽くしたいってのは常識だろ

728:132人目の素数さん
21/01/31 15:26:17.44 ZYF1yykm.net
>>682
ド、ド、ドモルガンて論理式とかの話ぢゃね?
そ、そ、それで複素数の計算が
で、で、できるんかいな?

729:132人目の素数さん
21/01/31 15:40:10.71 eLyrQTPI.net
>>699
馬鹿だから間違えたんだろ
いちいち馬鹿の相手すんな
時間の無駄

730:132人目の素数さん
21/01/31 15:50:36.30 3ztm8i8a.net
>>700
真意は、吶る(どもる)というジョークだろ。

731:132人目の素数さん
21/01/31 15:57:53.07 lN3ThQ+I.net
荒らしに構うな

732:132人目の素数さん
21/01/31 17:17:09.72 1GtbAOjB.net
>>699
複素数が実数を含むとか
集合の演算例でもあるんじゃね?

733:132人目の素数さん
21/01/31 17:48:48.80 ZYF1yykm.net
>>701
正解です

734:132人目の素数さん
21/01/31 18:02:48.05 eLyrQTPI.net
いつまでもくだらねえこと言ってないでせめて今年はJ Math Soc Japanレベルにアクセプトされる論文かけよ

735:132人目の素数さん
21/01/31 19:35:08.53 mPPX04im.net
>>694
>この問題でnx=θとおく
別におかなくても良いやン
交代なんだしすぐ抑えられる

736:132人目の素数さん
21/01/31 19:37:37.82 doy6Fs8G.net
教えていただきありがとうございました。
やっと理解できました。
あとひとつだけ...
この問題って結局なにを学ぶべき問題だったのでしょうか?
あんまりこの式が直線を表すこととかは問題の本質には関係しないことなのですか?
複素数の計算をどのようにして解くかって言う感じのことを理解しておけば十分でしょうか?

737:132人目の素数さん
21/01/31 19:38:34.59 doy6Fs8G.net
>>707
複素数の質問をした者です。(返信として投稿するのを忘れていたので一応....)

738:132人目の素数さん
21/01/31 20:03:14.23 eLyrQTPI.net
ただの計算問題
すごく古臭い問題

739:132人目の素数さん
21/01/31 20:39:54.19 1GtbAOjB.net
>>707
複素平面を図形感覚で扱える様にする事に決まってんじゃん
1つの対象を色々な角度で見れる事は数学以外でも重要だから
今後どの分野でも感覚として役立つだろ

740:369
21/01/31 20:46:50.30 slsdc2/W.net
40枚のコインがある。
1枚は偽物で重さが異なる(重いか軽いかは不明である)
天秤を4回まで使って良い。
その1枚を見つけたものに
WebMoney 1000円分を進呈。

741:132人目の素数さん
21/01/31 21:11:49.29 +t0CWDww.net
4回では(3^4-1)/2=40枚まで判別可
なんだ、1000円もらえるじゃん

742:132人目の素数さん
21/01/31 21:15:34.07 V3Q81Xnj.net
>>711
出来ないんじゃないか?
最初に載せるのが13枚ずつ以下だと釣り合った場合に疑いが残るコインが14枚以上になり、
28通りの可能性が残るがそれをあと3回、3^3=27通りの判別で見分けることは出来ない
最初に載せるのが14枚ずつ以上だと釣り合わなかったときに28通り以上の可能性が残り、やはりあと3回で見分けることは出来ない

743:369
21/01/31 21:30:09.01 slsdc2/W.net
>>713
出来るのだ。
疑いのあるコインが13枚を越えると
通常は無理なように見える。
しかし、2手目以後は
「正規品だと確定しているコイン10数枚」
これを材料として自由に使えるからな。

744:132人目の素数さん
21/01/31 21:32:16.13 xr0HOICB.net
ネット数学の超有名問題だからな
半年に一回くらいで上がってくる

745:132人目の素数さん
21/01/31 21:33:12.37 FoAtuery.net
正規品だと確定してるものとの比較だと重い場合も軽い場合も分かるから>>713の言う1通りしか判別できなかったはずのものが2通り同時に判別できるって事だな

746:369
21/01/31 21:33:25.41 slsdc2/W.net
>>713
即座にこれを指摘できるというのは
なかなか優秀だな。
おれと一緒に目指すか?

747:132人目の素数さん
21/01/31 22:02:55.21 Am3x8VTP.net
正規品だとわかっているものが何枚あろうと3回で判別出来るのは最大27通りしかないんじゃないの?
残る可能性が28通り以上あったら3回では無理なんじゃ?

748:132人目の素数さん
21/01/31 22:25:26.96 Yt9asmhH.net
「14枚の中から、軽重不明の偽物を見つけ出す」という問題と考えると28ビット必要だが、
14枚の中から、1枚を取り除いて、
「13枚の中から軽重不明の偽物を見つけ出すか、13枚全てを本物と見極める」
という問題と読み替えればよい。13枚が本物なら、取り除いた1枚が、偽物。
この場合は27ビットで可能。

749:132人目の素数さん
21/01/31 22:48:43.37 Am3x8VTP.net
重いか軽いかの判別はしなくて良いという問題だったのか

750:132人目の素数さん
21/02/01 05:07:31.77 2iYbcrHU.net
角度44.994010819158°と38.6539652849°からtanの値? を求めると
0.99979096と0.79983276になった この数字にある同じ数をかけてその数字から
atan?で角度をだすとその比が1.241058158308022対1だった
0.99979096と0.79983276にかけた数字をもとめたい

751:369
21/02/01 08:55:45.79 9PJ2bn+k.net
有意義なスレの流れに
さすがのアタシも満足 ( ^ω^)

752:132人目の素数さん
21/02/01 11:09:46.61 jjXu+Br4.net
>>721
 0.99979096 : 0.79983276 = 5:4
から考えて 1/4 を掛ける。
 0.24994774 と 0.19995819
tan(0.24994774) = 0.2449294766397306859278
tan(0.19995819) = 0.1973553576035839710567
その比は 1.2410581583080507635974
題意を満たす。
有意義だ…

753:132人目の素数さん
21/02/01 12:08:35.10 tB+nQ7cs.net
>>693
>>655
4枚4枚載せて天秤が傾いたら、
双方の天秤の2枚2枚を載せ替えようとして、
天秤がつりあったら、
今外した2枚2枚のどれかだから、
片方の2枚を別の2枚と天秤にかけつりあったら、
もう片方の2枚のうちの1枚を天秤の上の1枚と入れ替え、
傾いたらその入れ替えた1枚が重さの違う1枚。
傾かなんだら載せなんだ1枚が重さの違う1枚。
片方の2枚を別の2枚と天秤にかけつりあわなんだら、
その2枚のうちの1枚を天秤の上の1枚と入れ替え、
傾いたらその入れ替えた1枚が重さの違う1枚。
傾かなんだら載せなんだ1枚が重さの違う1枚。
双方の天秤の2枚2枚を載せ替えようとして、
天秤がつりあわなんだら、
天秤の上の2枚2枚のどれかだから、
片方の2枚を別の2枚と天秤にかけつりあったら、
もう片方の2枚のうちの1枚を天秤の上の1枚と入れ替え、
(ちょっと中止します。3回でたぶんできます)
傾いたままなら載せてる1枚が重さの違う1枚。
傾きが元に戻ったら載せなんだ1枚が重さの違う1枚。

754:132人目の素数さん
21/02/01 12:21:56.87 tUaYHupg.net
数学嫌いも表裏一体だが数学でマウント取る奴がいたり
受験数学って本当によくねーな

755:132人目の素数さん
21/02/01 18:36:54.21 3xPEfS1G.net
ご質問させていただきます。問題は以下の通りです。(以下原文ママ抜粋)
1、2、3、4、5の番号をつけた5枚のカードがある。カード1枚をでたらめに取り出し、取り出したカードはもとに戻す試行をくり返す。
ただし、この試行は、取り出したカードの番号が4以上であるか、または取り出したカードの番号の和がはじめて4以上になったときに終了する。
カードを取り出した回数をXとするとき、次の各問に答えよ。
(1)確率P(X=1)およびP(X=2)を求めよ。
(2)は質問内容と直接関係がないため省略させていただきます。
【解答】
試行が1回で終了するのは、1回目に4


756:または5のカードを取り出すときであるから、  P(X=1)=2/5 試行が2回で終了するのは、  (1回目、2回目)=(1、3以上)、(2、2以上)、(3、1以上) であるから、  3+4+5=12(通り) ある。したがって、  P(X=2)=12/5^2=12/25 【以下、私の疑問点】 腑に落ちないのは最後の行の、  「P(X=2)=12/5^2=12/25」 の部分です。上述の式を確率の定義から考えると、  「2回試行を行う際に起こりうる、全ての場合の数(=25)を分母とした、二回目の試行で終了する場合の数(=12)」 ということになるのだと考えていますが、これっておかしくないですか?ここでいう全ての場合の数(=25)というのは、  「(1回目の試行で起こりうる5通りのカードの引き方)×(2回目の試行で起こりうる5通りのカードの引き方)」 という意味だと解釈しているのですが、設問の条件から、「1回目の試行で4、または5のカードが出た場合」は1回目で試行が終了するはずです。 そのため、1回目の試行で上述した2通りのいずれを引いた場合も、2回目の試行が行われるという場合が、そもそも存在しません。ということは、この「全体の場合の数」というのは正しくは、  「(1回目の試行で起こりうる、4または5のカードを引く場合を除いた3通り)×(2回目の試行で起こりうる5通り)」 だと思うのですが、今の考えの間違いがどこにあるのか全く見当がつきません。どなたかご指摘のほどよろしくお願いいたします。



757:132人目の素数さん
21/02/01 19:02:54.90 ScbrgHG6.net
>>726
それが原文ママなのか
P(X)の定義がどこにも書いてないから忖度しないと試行がX回目に終了する確率を表しているとは解釈できないからかなり酷い問題文だぞ
【以上、俺の疑問点】
万一、「1回目で終了しなかった前提で2回目に終了した確率」「1回目に終了しなかった条件のもとで2回目に終了した確率」「ある時1回目には終了しなかった。次に2回目をやる時、終了する確率は?」
と聞かれたらあなたの解釈通り、答えは12/15=4/5で合っている
しかし、(そもそもP(X)の定義が本当に書いて居ないならあなたに過失はないが)その問題のP(X)は別の意味で、
「試行を1回もしてない段階を基準に、試行がX回目で終わる確率」という意味なのだろう。
この場合は1回目に試行が終わる確率の分だけ2回目に試行が終わる確率は少ないのに、X=1のパターンを分母から排除してしまっては不当に確率が高くなってしまう
この場合のP(2)の分母は、「1回の試行で終了した場合も意味はないがカードをもう1回取り出して戻す事にする(こうしないと各パターン同様に確からしくならない)。この時の2回で起こり得る全ての場合の数」5×5(1回目に終了した場合も一応引いたカードが1~5の5通りずつある)=25になる

758:132人目の素数さん
21/02/01 19:04:08.21 ScbrgHG6.net
書くつもりで書き漏れだことがあったけど途中のカギ括弧三連打に書いてある日本語は3つとも同じ意味ね

759:132人目の素数さん
21/02/01 19:06:35.68 IVG0MHe8.net
>>726
君の考え方なら1回目に終了しない確率をかける必要があるから(12/15)*(3/5) となって結局同じ
1回目に終了しない確率をかけないと、「1回目に終了しなかったとき、2回目で終わる確率」という条件付き確率を計算していることになる

760:132人目の素数さん
21/02/01 19:09:33.90 ScbrgHG6.net
よく見るとP(X)の定義が書いていないというよりはXの説明が確率変数を説明してるらしいから作問者は定義したつもりか
そしてその説明があまりにウンコすぎて伝わらないし確率変数だということすら伝わらないだけか

761:132人目の素数さん
21/02/01 19:12:28.97 ScbrgHG6.net
てかまた間違った解答がBAになりやがった意味不明すぎる
次の問題における積分のやり方を忘れてしまいました
どなたか途中式込みで回答解説お願いします! #知恵袋_ URLリンク(detail.chiebukuro.yahoo.co.jp)
肝心の式変形に説明が無いのになぜBAに選んだのかも分からないが積分の上端と下端逆にするのはやべーだろ😡

762:132人目の素数さん
21/02/01 19


763::31:47.69 ID:3xPEfS1G.net



764:132人目の素数さん
21/02/02 01:57:06.37 C1Rm4M6i.net
>>693
イナさんが大学生の時にヘアヌードが解禁になったと思うけど、
イナさんはヘアヌード写真集を買ったことありますか?

765:132人目の素数さん
21/02/02 05:51:55.44 +Dn/x9Sw.net
>>699
>>701
こういうジョークを笑えずに怒る輩って気の毒だね。

766:132人目の素数さん
21/02/02 06:21:07.63 E7TAdVSk.net
>>726
検算用にシミュレーション
> f <- function(){
+ s=0 # 番号の和
+ i=0 # 試行の回数
+ while(s<4){ # 和が4未満なら
+ i=i+1   # 回数を1回増やして
+ s=s+sample(1:5,1) # 1枚選んで和に加える
+ }
+ return(i) # 試行回数を返す
+ }
> k=1e6 # 100万回シミュレーションして
> X=replicate(k,f()) # 試行回数の数列を記録して
> table(X)/k # 頻度割合を算出
X
1 2 3 4
0.399176 0.480913 0.111964 0.007947

767:132人目の素数さん
21/02/02 06:25:50.92 E7TAdVSk.net
>>733
それを題材にした問題
ヘアーヌード写真集の何冊に1冊は「もろだし」写真集であるという噂があったので10冊買ったが、どれも「もろだし」ではなかった。
11冊目を買ったときにそれが「もろだし」写真集である確率を求めよ。

768:132人目の素数さん
21/02/02 08:05:10.80 SJmkcqut.net
四角形ABCDが半径65/8の円に内接している。
この四角形の周の長さが44で、辺BCと辺CDの長さがいずれも13であるとき、
残りの2辺ABとDAの長さを求めよ
検索するとわりと出てくる有名な問題なんだけどコレ三角関数を使わないで中学生の幾何学だけで
解く方法を知りませんか?どこかで解説ページを見かけたんだけど保存し忘れてしまった

769:132人目の素数さん
21/02/02 10:32:21.95 yXZ/JXjd.net
円の半径が 65/8,
ピタゴラス三角形とすると
 AB, DA は {4,13,14,15} のいずれか。
 AB+DA = 44 -13 -13 = 18,
 ∴ {AB,DA} = {4,14}
ぢゃね?

770:132人目の素数さん
21/02/02 10:46:58.01 +Dn/x9Sw.net
>726を改題
1,2,,..,99,100の番号をつけた100枚のカードがある。
カード1枚を無作為に取り出す。
取り出したカードはもとに戻さない。
この試行をくり返す。
取り出したカードの番号の和がはじめて333以上になったときに終了する
終了までの回数を当てる賭けをする。いくつに賭けるのがもっと有利か?

シミュレーションでの予想 7回

771:369
21/02/02 11:10:54.49 EMENI2+R.net
人間と獣、その2つのもっとも大きな違いは何か?
(A欄大学 2021年 前期)

772:132人目の素数さん
21/02/02 12:08:03.23 Cex6aWRE.net
>>734
cardiovascular eventによるearly demiseが予想される。

773:132人目の素数さん
21/02/02 15:21:18.62 WSM2DHGm.net
久しぶりに来たら
まだプログラムキチガイがいたのかw
前は内視鏡の検査技師の設定だったのに
今は臨床医に変わってるのかww

774:132人目の素数さん
21/02/02 16:46:41.80 +Dn/x9Sw.net
>>742
検査技師の資格で内視鏡検査が施行できないこともしらない世間知らず発見!
医学部落ちた医師コンプかよ


775:?



776:369
21/02/02 17:29:12.24 EMENI2+R.net
>>724 よしっ。
ちなみに、簡単にするため12枚としたが、
基の問題では 13枚 だ。
「天秤3回で、13枚から1枚の偽物を見つけよ」
「天秤4回で、40枚から1枚の偽物を見つけよ」
みたいな感じで。
そもそも、これって天秤を使うだけの話だから
高校数学じゃないよな。
小4~中1のレベルで、まるでスレ違いの話題やんけ。
誰だよ、この話はじめたの… (´・ω・`)

777:132人目の素数さん
21/02/02 17:36:08.67 tv7nOuie.net
ABCDが一辺1の正方形で、OA=OB=OC=OD=a の正四角錐O-ABCDがある。
これを適当な平面で切って断面が正五角形にできるための、aの条件を求めよ。

座標を置いて考えるのでしょうか。面倒そうです。

778:132人目の素数さん
21/02/02 19:26:10.61 RSDv7Ep5.net
160問4択の試験で全問テキトーに回答したとして、
正解数はどんな感じの分布になりますか?
50%の確率で30-50問、25%の確率で10-29問、とかそんな感じで
TOEIC400はザックリ自力正解2割、残り8割マーク塗り絵で2割正解
みたいな感じだと思うんですが、
英語力は変わらなくても、10%の確率で600取れるときあるかもしれないとか、
そんなんが知りたいです(ちなみにTOEICはだいたい1問5点)

779:132人目の素数さん
21/02/02 19:37:16.03 G/u9tT+f.net
>>740
出題者を含むかどうかが決定的だな
それ以外は自己欺瞞だ

780:132人目の素数さん
21/02/02 19:37:45.92 yXZ/JXjd.net
>>738
 R = 65/8,
ピタゴラスの定理から
 ⊿ = OBC = OCD = (13/2)(39/8) = 507/16,
 BD = 4⊿/R = 78/5,
トレミーの定理から
 AC = (AB・CD + BC・DA)/BD = 13(AB+DA)/BD = 13(44-13-13)/(78/5) = 15,

781:132人目の素数さん
21/02/02 20:07:09.27 M2ZrkDa4.net
反転の問題で
原点と異なる点Pとあって、その後にOP☓OQ=1と書いてることが多いですが、OP☓OQ=1があれば自動的にPは原点と異なると思うのですが…
原点と異なるという文も必要なのでしょうか?

782:132人目の素数さん
21/02/02 20:10:14.32 tTWcmhnH.net
>>734
滑ってんぞ

783:132人目の素数さん
21/02/02 20:15:15.66 tTWcmhnH.net
>>736
バカモン
>>740
正解とは丸っ切り違う解である事を厭わず言わせて頂くと
現代の人間の殆どは人の皮を被った獣と言って良いほど
仏教で説かれる内の人間道ではなく畜生道で喰い合いが激化している

784:132人目の素数さん
21/02/02 22:22:58.31 G/u9tT+f.net
>>736 は確率 0 に決まっとるわな

785:132人目の素数さん
21/02/02 23:49:59.92 xYa7nz+C.net
正六角形の平行する辺の幅を1とした時の1番長い対角線の長さを求める公式を教えて下さい。

786:132人目の素数さん
21/02/02 23:52:16.70 G/u9tT+f.net
妙な表現だな
ひっかけか

787:132人目の素数さん
21/02/03 01:24:17.90 BSkx0iRO.net
>>723
どうやって1/4を求めたのか知りたいんだ

788:132人目の素数さん
21/02/03 04:41:35.15 0B0Lm1bA.net
>>740
社会性と思ったけど集団で狩りをする獣もいるから、これは不正解。
道具を進化させ、それが使えることだな。

789:132人目の素数さん
21/02/03 04:49:06.95 0B0Lm1bA.net
>>750
遊び心がないのね?

790:132人目の素数さん
21/02/03 04:54:40.05 0B0Lm1bA.net
>>752
これも確率0?
ヘアーヌード写真集の何冊に1冊は「もろだし」写真集であるという噂があったので1冊買ったが、どれも「もろだし」ではなかった。
2冊目を買ったときにそれが「もろだし」写真集である確率を求めよ。

791:132人目の素数さん
21/02/03 05:05:28.79 0B0Lm1bA.net
>>746
手計算は面倒なのでプログラムに計算させると
> 正解の数(30,50)
[1] 0.9453


792:706 > 正解の数(10,29) [1] 0.0247031



793:132人目の素数さん
21/02/03 05:16:11.23 0B0Lm1bA.net
>>746
乱数発生させて1000万回シミュレーションすると
URLリンク(i.imgur.com)

794:132人目の素数さん
21/02/03 05:24:17.58 0B0Lm1bA.net
>>760
変数が離散量なので、50%信頼区間を足し算して計算すると
> fn(160,0.25,0.5)
range = 36 43 conf.level = 0.534
range = 37 43 conf.level = 0.477
正規分布近似で連続量すると
asymptotic range = 29.26 50.74
無作為に答を選んだときには約50%の確率で上記の範囲が正解数になる。

795:132人目の素数さん
21/02/03 05:51:52.37 0B0Lm1bA.net
>>721
Wolfram先生に
 solve atan(0.99979096x)/atan(0.79983276x)=1.241058158308022
を入力して計算してもらいました。
URLリンク(www.wolframalpha.com)
x ? ± 0.250000000000420...
だそうです。

796:132人目の素数さん
21/02/03 05:58:35.27 0B0Lm1bA.net
>>762
Rでも似たような値になった。
> a=0.99979096
> b=0.79983276
> c=1.241058158308022
> uniroot(function(x) atan(a*x)/atan(b*x) - c ,c(0.001,1))$root
[1] 0.2499946
> uniroot(function(x) atan(a*x)/atan(b*x) - c ,c(-1,0.001))$root
[1] -0.2499944
約0.25でよさそう。

797:132人目の素数さん
21/02/03 06:04:01.64 DQLd+JDG.net
>>743
自分を医師と思い込むキチガイ
とりあえず病院行けよ知恵遅れ

798:132人目の素数さん
21/02/03 06:30:52.19 MNJ8JS7S.net
>>753
2/√3

799:132人目の素数さん
21/02/03 06:37:14.57 MNJ8JS7S.net
>>764
今日は内視鏡バイトで病院に行くよ。
夏場の防護服着ての検査は汗だくで大変だった。
5月は防護服が入手できなくて1ヶ月間休診だったけど、給与は全額支給された優良職場。

800:132人目の素数さん
21/02/03 06:45:47.53 MNJ8JS7S.net
>>764
こういうの俺の投稿
スレリンク(hosp板:546番)
ついでに、結紮輪ゴム固定時の留意事項を追記してきた。

801:132人目の素数さん
21/02/03 06:48:10.32 MNJ8JS7S.net
>>756
公理から出発した定理も一種の進化した道具といえる。

802:132人目の素数さん
21/02/03 10:42:37.36 X5L06VDg.net
>>757
滑ってるもんは滑ってる以外の何物でもないのに、滑り自虐で自らオチを着けるでもない
こんなもん罵りツッコミか冷遇ツッコミで滑り止めする以外に方法は無い

803:369
21/02/03 11:00:49.55 xHKx4kJc.net
>>751 >>756
そもそも、人間と獣にどれほどの違いがあるのか。
「それでは人間は獣と変わらないよ」
という台詞を漫画などで良く見かけるが
人間が獣とさして変わりなかったとして、
それの何が悪いのか?

804:132人目の素数さん
21/02/03 12:40:40.08 ys7qPswl.net
>>765
全然違うだろ。

805:132人目の素数さん
21/02/03 14:07:07.70 1fUma89D.net
五者択一の500問で正解率80%以上で合格の試験があるとする。
太郎君は正解がわからない問題は無作為に選択肢から選んで解答する。
偶然でなく確実に何%以上正解できれば太郎君の合格可能性が90%を超えるか?

806:132人目の素数さん
21/02/03 14:47:28.03 lfNGIKtW.net
コイントスをして【裏】がでるか【表】がでるかを予想します
70%当たる占い師(A)
55%当たる占い師(B)
(A)(B)がともに【表】が出ると言いました
ここで問題です
【表】が出る確率は?

807:132人目の素数さん
21/02/03 15:55:08.37 gtrPf1lQ


808:.net



809:132人目の素数さん
21/02/03 17:07:19.84 8ZOUz


810:dCR.net



811:132人目の素数さん
21/02/03 18:02:22.46 8ZOUzdCR.net
arctan(ax)/arctan(bx) = (a/b) + (a/b)(aa-bb){ -(1/3)x^2 + (1/45)(9aa+4bb)x^4 - (1/945)(135a^4 +72aabb +44b^4)x^6 + ・・・・ }
a/b = 1.2500000125 のとき
 aa - bb = 0.3600000128 aa
 bb = 0.6399999872 aa
 (a/b){1 - 0.12000000427(ax)^2 + 0.09248000288(ax)^4 - 0.075848354045(ax)^6 + ・・・・ }
これより
 ax = 0.24994774
 x = 0.25

812:132人目の素数さん
21/02/03 18:45:43.41 0B0Lm1bA.net
>>773
77/104

813:132人目の素数さん
21/02/03 18:54:19.48 8AjbC6mM.net
(1+1/n)^(n+1) > 1/k! のk=0からnまでの和 
の証明をどなたかお願いします...
(1+1/n)^n < 1/k! は示せたのですがこっちが分からんっす

814:132人目の素数さん
21/02/03 18:55:38.64 8AjbC6mM.net
訂正
(1+1/n)^n < 1/k! のk=0からnまでの和 
は示せたのですがこっちが分からんっす

815:132人目の素数さん
21/02/03 18:58:14.18 1fUma89D.net
>>773
改題
オリンピックが中止になる確率は一様分布と仮定して
70%当たる占い師(A)
55%当たる占い師(B)
のどちらもオリンピックが中止になると占った。
オリンピック中止になる確率の期待値と95%信頼区間を求めよ。

816:132人目の素数さん
21/02/03 20:26:21.21 8ZOUzdCR.net
 (1 + 1/n)^{n+1} > e,
なら示せるけど。
(1+1/n), (1-1/nn), ・・・・・, (1-1/nn) で相加-相乗平均すると
        n個
 1 > (1+1/n)(1-1/nn)^n = (1+1/n)^{n+1}・(1-1/n)^n,
∴ n^{2n+1} > (n+1)^{n+1}・(n-1)^n,
 (1 + 1/(n-1))^n > (1 + 1/n)^{n+1} > ・・・・・ > e,

817:132人目の素数さん
21/02/03 21:30:52.51 mmdD687q.net
>>781
回答ありがとうございます。
ここから1/k!の部分和がeより小さいってことの証明は可能でしょうか?

818:132人目の素数さん
21/02/04 02:10:04.66 240LMeMk.net
>>782
1/1!<e
はい証明できました

819:132人目の素数さん
21/02/04 02:24:56.15 VqggwzCZ.net
>>783
> >>782
> 1/1!<e
部分和なら1/0!とか1/0!+1/1!とかだろう。

820:132人目の素数さん
21/02/04 02:28:42.49 240LMeMk.net
>>784
1/0!<e
はい証明できました

821:132人目の素数さん
21/02/04 02:54:44.46 KkALMUyo.net
>>781
 1 + x < e^x   (x≠0)
より
 1 - 1/n < e^{-1/n},
 (1 + 1/(n-1))^n = (n/(n-1))^n = ((n-1)/n)^{-n} = (1 - 1/n)^{-n} > e,
n → n+1
 (1 + 1/n)^{n+1} > e,

822:132人目の素数さん
21/02/04 02:57:14.39 2TMuPM95.net
lim[n→∞]{Σ[k=0,n](1/k!})は単調増加で e に収束する級数である事を示した後に工夫すれば良い
工夫の前段階が示せないなら検索して調べれ

823:132人目の素数さん
21/02/04 09:03:11.36 MLTb1blz.net
>>749
いらない

824:132人目の素数さん
21/02/04 14:52:15.50 AKtiB31I.net
>>767
統合失調症のキチガイか
最初は中学生の設定だったくせによ
不労所得の意味すら知らなかったアホが医師とかwww

825:132人目の素数さん
21/02/04 18:02:22.05 oPccK011.net
>>789
バイクリルも今は安い後発品がでているけど、糸の滑り具合が違って扱いにくかったな。
スリップノットで結ぶときに後発品は滑りが悪い。まあ、ほどけにくいというのが売りだったが。

826:132人目の素数さん
21/02/04 18:07:02.75 oPccK011.net
>>789
医学部落ちたのか?
接客業って賤業だぞ。病棟持つとプライベートな時間がなくなる。

827:132人目の素数さん
21/02/04 18:17:59.74 o8XcMK46.net
そうだよな
5chで数学ごっこしてる医者なんているわけないよな

828:132人目の素数さん
21/02/04 19:22:25.82 gQtbxgzP.net
>>788
ありがとうございます
と�


829:ネると何のために問題に書いてあるのか疑問ですね



830:132人目の素数さん
21/02/04 19:47:40.21 gL9wYQ9h.net
>>793
いる

831:132人目の素数さん
21/02/04 21:02:36.15 KkALMUyo.net
e = Σ[k=0,∞] 1/k!
は解析的に(マクローリン) 示される高尚な式。
(1+1/n)^n < ・・・・ < (1+1/n)^{n+1} は AM-GM でも出せる安価な式。
それが混在しているところに違和感があるんだなぁ

832:132人目の素数さん
21/02/04 21:19:29.36 240LMeMk.net
マクローリン展開が高尚ってところに違和感がある

833:132人目の素数さん
21/02/04 21:42:46.95 7qIFtmiI.net
>>774,777,780
>>773を考えてみたのですが頭がこんがらがってわかりません><
例えば
 100%当たる占い師Aと0%当たる占い師Bだったとき
 どちらも「表」と占った場合、表が出る確率は50%
もし、
 100%占い師A、100%占い師Bだったとき
 どちらも「表」と占った場合、表が出る確率は100%
もし、
 0%占い師A、0%占い師Bだったとき
 どちらも「表」と占った場合、表が出る確率は0%
ですよね?
一方で(全員50%を超える)占い師A、B、C、D・・・と無限にセカンドオピニオンしていった場合
(全員が同じ答えを【表】を占うとして)相談する件数を増やせば増やすほど占いの当たる確率が上がる
なんてことはないですよね
と考えていたら一体どう計算すればいいのかわからなくなってしまいました助けてください

834:132人目の素数さん
21/02/04 21:51:56.17 7qIFtmiI.net
連投すみません、自分のレスを見て即思ったのですが
>(全員が同じ答えを【表】を占うとして)相談する件数を増やせば増やすほど占いの当たる確率が上がる
>なんてことはないですよね
これは、確率は上がっていくと思いなおしました
(現実とは違い◯◯%当たる占い師という前提があるので)

835:132人目の素数さん
21/02/04 22:07:22.30 ds/XDzML.net
>>797
>  100%当たる占い師Aと0%当たる占い師Bだったとき
>  どちらも「表」と占った場合、表が出る確率は50%
これはおかしい
100%当たる占い師と0%当たる占い師がいたら、両者の占いが一致することはない

836:132人目の素数さん
21/02/04 22:26:29.78 7qIFtmiI.net
>>799
なるほどたしかに
順序が必要で、先にAが表と占えば必然的にBは裏と占うわけですね

837:132人目の素数さん
21/02/04 22:45:22.55 2TMuPM95.net
>>794
何だ、居るのか
お前が抱いた女の腹の中に

838:132人目の素数さん
21/02/05 00:26:27.97 R/lGJaK4.net
>>793
書いてないと気づかない人がいるからサービス

839:132人目の素数さん
21/02/05 00:34:10.51 wMATAAPJ.net
空間にAB=4を満たす定点A、Bがあるますとき、
PA-PB=2 を満たす点Pの軌跡は、双曲面になるのでしょうか

840:132人目の素数さん
21/02/05 02:33:46.37 KvqCdmt8.net
>>749
意味的には不要だが文章的には必要
英語で書けば any point except origin となるが
意味があるのは any の方なのに、こちらが省略されるという日本語独自の現象
その結果、意味がないはずの except origin を省略できない

841:132人目の素数さん
21/02/05 03:06:31.28 0vW6EBkH.net
任意の点P
と書いたらあかんの?

842:イナ
21/02/05 04:26:17.77 aI3wrJ+W.net
>>724
>>753
平行する辺の幅をxとおくと、
題意の対角線yは、
y=2x√3/3
たとえば平行する辺の幅が30√3cm(52cm弱)として、
正六角形の最長の対角線の長さは、
2×30√3×√3×(1/3)=60(cm)
∴イナの公式として使用できる。

843:132人目の素数さん
21/02/05 07:18:38.94 4R5y0olT.net
>>794
勤務時間にFXやっている医者は普通にいるよ。

844:132人目の素数さん
21/02/05 07:21:33.15 4R5y0olT.net
>>806
>765の2/√3を書き換えただけにしかみえんが。

845:132人目の素数さん
21/02/05 07:26:52.33 A3SYTEMe.net
>>797
ベイズの公式に当てはめるだけ。
占いの当たる確率を変えてグラフにしてみる。
URLリンク(i.imgur.com)

846:132人目の素数さん
21/02/05 08:17:52.11


847: ID:A3SYTEMe.net



848:132人目の素数さん
21/02/05 08:19:53.70 A3SYTEMe.net
>>799
二者択一だったら占いが30%当たるというのは、実質70%あたるのだから、50%以上で考えればいいんじゃないの?

849:132人目の素数さん
21/02/05 08:21:28.27 A3SYTEMe.net
>>811
それに従ってグラフを修正
URLリンク(i.imgur.com)

850:132人目の素数さん
21/02/05 08:30:37.06 tnVUBOoO.net
まーたプロおじ暴れてるよ

851:132人目の素数さん
21/02/05 09:31:39.88 0vW6EBkH.net
NGに入れてるから快適よ

852:132人目の素数さん
21/02/05 10:00:26.19 9nfe9huV.net
>>810
こういうクソコードばっかり
なんで恥ずかしげもなくこんなゴミ上げれるんかな?

853:132人目の素数さん
21/02/05 11:02:20.30 A3SYTEMe.net
>>806
イナ先生の公式
2/√3=2×3/√3

854:132人目の素数さん
21/02/05 11:04:48.86 A3SYTEMe.net
>>815
じゃあ、エレガントなコードを挙げてみたら。
ベイズの公式に入力するだけの話だから、誰が書いても似たようなものになると思うけど。

855:132人目の素数さん
21/02/05 11:04:49.94 1dpjmMvE.net
URLリンク(examist.jp)
受験の月のロピタルの定理のページの「高校範囲の記述」で
URLリンク(i.imgur.com)
この右から2番目の等式ダメじゃね?
微分係数の定義から直接、f′(a)/g′(a)が存在する時「=f′(a)/g′(a)」となるのであって、「=lim[x→a]f′(x)/g′(x)」は容易には示せないのでは
逆にそれが(「=f′(a)/g′(a)」を経ずに)示せるならロピタルの定理の1階微分の場合だけじゃなくn階微分の場合も式変形だけで示せるはずだし。

856:132人目の素数さん
21/02/05 11:25:43.44 t/psae1U.net
>>803
なるます。
kwsk は、二葉双曲面の (Bに近い方の) 枝。
AB を 3:1 に内分する点を頂点とする。

857:132人目の素数さん
21/02/05 11:34:15.66 1dpjmMvE.net
>>773,797
教科書の公式に当て嵌めるなら
0.5×0.7×0.55/(0.5×0.7×0.55+0.5×0.3×0.45)だが、まあ式を考えなくても要は
コインの表裏は対等で
表が出た場合には確率0.7×0.55の出来事(占い結果)が起きた事になり、裏が出た場合には確率0.3×0.45の出来事が起きた事になるから
表と裏の確率比は0.7×0.55:0.3×0.45ということだ 後者の方が占い結果に削ぐわないから可能性として不利、というのを数値的に反映している

858:132人目の素数さん
21/02/05 11:58:28.48 9nfe9huV.net
>>818
いけてるやろ
高校の教科書では
lim F(x), lim G(x)が存在してlim G(x)≠0のときlim F(x)/G(x)も存在して
  lim F(x)/G(x) = lim F(x)/ lim G(x)
が成立する
は定理�


859:オい



860:132人目の素数さん
21/02/05 12:00:46.38 4R5y0olT.net
>>771
じゃあ、いくつに何の?

861:132人目の素数さん
21/02/05 12:09:17.66 lMtOiTQo.net
>>807
おいジジイ
平日も連日5chかよ
この穀潰しが

862:132人目の素数さん
21/02/05 12:29:11.36 1dpjmMvE.net
>>821
だからこそ「=f′(a)/g′(a) (=limf′(x)/g′(x))」という順番になるでしょ?
※F(x)=(f(x)-f(a))/(x-a)とするとf′(a)=limF(x)に相当

863:132人目の素数さん
21/02/05 12:33:51.29 4R5y0olT.net
>>823
暇つぶしにフェントスとか舌下免疫療法のe-learningを受けたりしたけど、救急外来や内視鏡外来で処方することはないね。
いつの間にか、シダトレンが発売中止になっていた。
オリンパスの~胃拡大内視鏡診断・Web学習システム~は面白かったぞ。
受講前の66/100が受講後は81/100になったので効果があったか検定してみた。
X-squared = 5.0314, df = 1, p-value = 0.02489
まあ、有意差あり。

864:132人目の素数さん
21/02/05 12:39:19.45 9nfe9huV.net
>>824
イヤ、ほんとにうるさい事いえば
仮定によりlim (f(x)-f(a))/(x-a)もlim (g(x)-g(a))/(x-a)も存在して、よって教科書に載ってる定理よりlim ((f(x)-f(a))/(x-a) ) /( g(x)-g(a))/(x-a) )も 存在して‥
とHypothesisのチェックからしないといけないところだけど、高校数学ではそれは変形しただけでやった事とみなすというde facto standerdがある
それに文句言っても仕方ない

865:132人目の素数さん
21/02/05 12:40:13.56 1dpjmMvE.net
>>826
何かもう1回俺のレス読み返してくれないか?

866:132人目の素数さん
21/02/05 12:41:40.96 9nfe9huV.net
>>827
なんか気に障ったみたいだからやめとく
レスバなんぞに興味ないし

867:132人目の素数さん
21/02/05 12:42:10.44 1dpjmMvE.net
>>828
気に障ってないから安心してくれ
レスバとかじゃなくて多分話が通じてない

868:132人目の素数さん
21/02/05 12:50:18.79 4R5y0olT.net
>>823
みずほ銀行は週休3~4日で副業解禁というね。副業できる人にとっては朗報。
4月からバイトを増やしてくれと頼まれたが午前中だけだし、タクシーチケットもでるから引き受けた。

869:132人目の素数さん
21/02/05 13:52:53.00 fNPw/w8j.net
>>830
誰もそんなこと聞いてないし医者とも思ってない。

870:132人目の素数さん
21/02/05 15:01:23.36 ot5z5gX1.net
>>809,820
ありがとうございます
なるほど、裏が出た場合とはそういう意味があったのですね腑に落ちました
占い率0.55の占い師10人のうち8人が「表」と言った場合も計算してみたところ
0.769239887763884となり
占い率のわかっている占い師何万人に聞いて周れば
予想の精度も上がるのではと思いました
予想の出題内容に依りそうな気もしますが。
前より頭がすっきりしました ありがとうございました

871:132人目の素数さん
21/02/05 15:15:44.91 uEWUekyR.net
>>832
そうだね、人数を増やせば増やすほど占い結果の多数派の的中率が上がる

872:132人目の素数さん
21/02/05 15:35:02.72 wMATAAPJ.net
平面上の話です。半径の異なる2円C、Dが外接してます。
CとDの共通外接線と、CとDの中心を通る直線の、交点をKとします。
CとDの双方に外接する円(それぞれ接点をL,M)をとるとき、
直線LMは点Kを通るといえるみたいなのですが、これは正しいですか。

873:132人目の素数さん
21/02/05 15:42:22.92 mYWLxS73.net
1949年ノーベル生理学医学賞ロボトミー�


874:闖pを瓜生ヒロユキに施術されたし



875:132人目の素数さん
21/02/05 15:42:34.52 CShU7M3I.net
対称性から明らかとかじゃダメなんかな?

876:132人目の素数さん
21/02/05 16:03:50.95 4R5y0olT.net
>810のpに一様分布乱数をいれて計算すれば>780の答がだせる。
手計算じゃ無理だろうと思う。

>>831
そんなに医師に拘るなんて、医学部落ちたのか?
リスクの高い接客業という賤業がうらやましいかよ?

877:132人目の素数さん
21/02/05 16:19:11.01 4R5y0olT.net
>>832
>予想の出題内容に依りそう
オリンピックが中止になる確率は一様分布と仮定して
占い率0.55の占い師10人のうち8人が「中止」と言った場合
中止確率の事後分布は
URLリンク(i.imgur.com)

878:132人目の素数さん
21/02/05 17:28:23.83 4yd4LbUM.net
プロおじが一番医者に拘ってるけどやっぱ落ちたんか?

879:132人目の素数さん
21/02/05 18:28:54.71 fNPw/w8j.net
>>839
医者を騙る医療事務かと思われます。

880:132人目の素数さん
21/02/05 18:30:08.84 fAhFwSqk.net
双方に接する円との接点をPQ、中心を通る直線とPRの交点をQ、2円の接点をCとおく
△RCQと△RPCが相似だからPR・QR=CR^2
故にRを中心とし半径CRの円についての反転で2円は移りあう
Kを中心とし半径CKの円についての反転でも同様
∴C=K

881:132人目の素数さん
21/02/05 18:32:16.74 fNPw/w8j.net
>>837
おいジジイ、日本語読めないのか?
非医はお前のことだ。

882:132人目の素数さん
21/02/05 18:55:19.79 j8cjiIKE.net
医者とかプロおじとかどうでもいいから数学の話しろや
どーせテメーらは全員アホなんだから

883:132人目の素数さん
21/02/05 19:20:33.15 j8cjiIKE.net
「医者を騙るやつ」も「医者を語るやつを揶揄するやつ」もどっちも邪魔
消えろ

884:369
21/02/05 19:56:48.87 +1dXz5Js.net
さてと、ほなら
今日もガキどものために
問題を解いてやりますかっと ~
 ( '‘ω‘)

885:132人目の素数さん
21/02/05 19:58:08.64 H4m64PRW.net
>>844
具体的に医療過誤で何人かコロコロしとるんやろなー。

886:132人目の素数さん
21/02/05 20:17:45.78 ibdK8AHU.net
URLリンク(imgur.com)
(1)は解けたけど(2)には手も足も出ません。
考え方も含めて詳しく教えていただけませんか?

887:132人目の素数さん
21/02/05 20:39:42.19 j8cjiIKE.net
頻出問題

888:132人目の素数さん
21/02/05 20:56:27.79 qXFkwDTr.net
今更だけど平均値と中央値になるんやな

889:132人目の素数さん
21/02/05 21:00:52.54 j8cjiIKE.net
>>847
考え方も何もふつうに場合分けで絶対値はずして式を眺めれば左右対称のグラフになるってわかるやろ

890:132人目の素数さん
21/02/05 21:44:37.93 /7ErvALH.net
>>847
a_i < x <= a_{i+1} (i = 0, ..., n) で場合分け
ただしa_0 = -∞, a_{n+1} = +∞

891:132人目の素数さん
21/02/05 21:59:15.07 Dewo+O3D.net
問題集回答の言い回しがわかりません教えてください!!
(x-2y) ^5の展開式における一般項は,二項定理により
~である. ここで, 「x^2 y^3の項は r=3のときに対応するから」求める係数は~となっているのですが
鍵かっこの部分の意味がいまいちわかりません。
対応するというのが難しいです。項は係数まで含めるはずなのでx^2y^3となる項という意味だと思いますが

892:132人目の素数さん
21/02/05 22:11:47.24 j8cjiIKE.net
>>852
展開したら r は 0、1,2,3,4,5のすべてを動くけど
いま知りたいx^2 y^3の項になるのはr=3のときだけって意味

893:132人目の素数さん
21/02/05 22:49:15.07 Dewo+O3D.net
>>853
r=3のときになるってことですよね
あえて対応すると言われると写像とか全単射とかそういうイメージがあるんじゃないかと思ったんですが飲み込まないとだめですねm(_ _)m

894:834
21/02/05 23:30:54.95 wMATAAPJ.net
>>841様 たぶん私>>834へのレスだと思うのですありがとうございます。
ただ点の名前で混乱してしまいますr
最初の
>双方に接する円との接点をPQ
これは、PQではなく PR でしょうか?

895:132人目の素数さん
21/02/05 23:50:17.21 0vW6EBkH.net
>>854
写像で考えたらなにか問題でも?

896:132人目の素数さん
21/02/06 00:03:49.03 oZ8nwCsc.net
>>856
「対応」ってことは対を意識してる感があるんですけどその頭がないので違和感あるんですよね
写像は大学生じゃないので知りません、それで納得できるのであれば調べます

897:132人目の素数さん
21/02/06 00:06:34.39 HLOEWzjd.net
対応っていうんだから当然、対を意識している
その頭で考えて間違いない

898:132人目の素数さん
21/02/06 00:28:42.58 QUjmNkol.net
>>857
おまえが通ってるキチガイ病院では田中先生が対応します
この文章でも写像とか全単射とかイメージするの?
全単射についてなんなのか知らないのに???

899:369
21/02/06 01:35:49.57 h7iDZ7oZ.net
>>854
意味は同じだぁね。
その項の持つ変数 と それに係る係数
これが 1対1 で対応しているから。

900:132人目の素数さん
21/02/06 02:42:27.56 +jBhDJLP.net
反転幾何学使うならもっと簡単だった
PQを2接点として接線の交点をSとする
SP,SQは最大円とも接するからPS=QS
よってSはC,Dの根軸上で根軸はC,Dの接点Tにおける共通接線
∴SP=SQ=ST
よってPQTの外接円Eの中心はS
よってEはK中心、半径KTの円Xと接するからXに関する反転で不変
また、Xに関する反転でC,Dは移りあうからPと、Qは移りあう
よって反転の定義からKPQは同一直線上□

901:132人目の素数さん
21/02/06 06:42:35.56 7u+zwZ5r.net
>>832
>占い率のわかっている占い師何万人に聞いて周れば
>予想の精度も上がるのではと思いました
これを体感してみる。

占い率0.55の占い師10人のうち8人が「表」と言った場合
占い率0.55の占い師100人のうち80人が「表」と言った場合
>810の関数を呼び出して計算
f <- function(n,m,p=0.55){
calc(1/2,rep(p,n),rep(1:0,c(m,n-m)))
}
f(10,8)
f(100,80)
> f(10,8)
[1] 0.76923988776388408
> f(100,80)
[1] 0.99999409816730833
グラフにしてみた。
URLリンク(i.imgur.com)

902:132人目の素数さん
21/02/06 06:51:32.37 7u+zwZ5r.net
応用問題
 (1)占い率0.55の占い師10人のうち8人が「表」と言った場合
 (2)占い率0.55の占い師20人のうち13人が「表」と言った場合
では、どちらが表の確率が高いか?

903:132人目の素数さん
21/02/06 07:12:14.47 7u+zwZ5r.net
>>863
占い師の総数と表と答えた占い師の数から表の確率をグラフ化
URLリンク(i.imgur.com)

904:132人目の素数さん
21/02/06 07:18:13.81 0u90OoNC.net
プロおじにはスレタイ読んでほしい

905:132人目の素数さん
21/02/06 07:29:54.24 1wyI9Vw2.net
>>864
おいジジイ
まだ成仏してなかったのかよ。
あとマルチするな

906:132人目の素数さん
21/02/06 07:42:14.64 7u+zwZ5r.net
>>865
>367

907:132人目の素数さん
21/02/06 07:43:47.52 7u+zwZ5r.net
>>839
>130

908:132人目の素数さん
21/02/06 07:46:18.99 7u+zwZ5r.net
>>866
マルチするなとマルチするなよ!

909:132人目の素数さん
21/02/06 08:06:31.17 0u90OoNC.net
>>867
高校数学ってスレタイだけど
>>868
なんで>>130に安価飛ばしたの?

910:132人目の素数さん
21/02/06 08:23:52.25 1wyI9Vw2.net
>>869
統計厨はお引き取り下さい。

911:132人目の素数さん
21/02/06 10:58:16.04 dXqmnDVK.net
>>834は私が図を書いて見つけたんですけど
これは今まで知られてなかった事実ですか?
もしかしてノーベル賞級の発見ですか?

912:132人目の素数さん
21/02/06 11:03:10.27 QUjmNkol.net
>>872
100年後に評価が下されると思うのでそれまで楽


913:しみにお待ちください



914:132人目の素数さん
21/02/06 13:08:24.23 1P0wuzxR.net
>>834
Cを単位円にしてDと外接円の半径は乱数発生させて作図してみた。
青が共通接線、赤が接点を結ぶ直線
URLリンク(i.imgur.com)
成立すると予想。
証明は知らん。

915:132人目の素数さん
21/02/06 13:23:21.83 1P0wuzxR.net
>>874
大きくして見やすくしてみた。
URLリンク(i.imgur.com)

916:132人目の素数さん
21/02/06 13:34:20.11 1P0wuzxR.net
>>866
高齢者=老害、としか考えられない人って親の愛情に恵まれない哀れな人生を送ってきたのだろうな。

917:132人目の素数さん
21/02/06 13:53:00.85 qZ9SKcbd.net
任意の高齢者ではなくてある一人の高齢者に言及してるのでは?

918:132人目の素数さん
21/02/06 16:41:58.88 1wyI9Vw2.net
>>876
高齢者と老害の違いもわからないのか?高校数学語る前に日本語の勉強してこい。
お前みたいなのは老害。それ以外は高齢者。わかるか?

919:132人目の素数さん
21/02/06 16:47:08.05 zhXxio5A.net
>>834
2円C,DはKを中心として相似だから
 KL' = α KL
 KM' = (1/α) KM
方ベキの定理(C)から
 KL'・KM = α KN^2
方ベキの定理(D)から
 KL・KM' = (1/α) KN^2
以上より
  KL・KM = KN^2,
ところで補題より
 L,M,Nを通る円は点NでKC'D'に接する。
方べきの定理(F)の逆から
 直線LMは点Kを通る。

〔補題〕
3円 C,D,E が 点L,M,N で外接している。(Nは2円C,Dの接点)
3円の中心を C',D',E' とするとき
 ⊿C'D'E' の内接円Fは 点L,M,N を通る。

920:132人目の素数さん
21/02/06 17:11:54.25 dXqmnDVK.net
L' と M' は何者?

921:132人目の素数さん
21/02/06 18:36:15.08 nkdyOwKg.net
>>874-875
何で『CとDの双方に外接する円』がCD共通外接線の内側に嵌まる例や
CDが合同になる例もシミュレートしてみねぇんだ使えねぇなテメェは
地頭が悪い医者じゃメスは握れんな

922:132人目の素数さん
21/02/06 19:39:14.98 1P0wuzxR.net
>>874
作図に使用した(複素平面に偏角を使ったりした)ルーティンを方程式に落とすと
円Cを原点を中心とする半径1の円、円Dは中心を(1+r,0)とする半径rの円
C,Dに外接する円の半径をRとするとL,M,Nの座標は
L((1+r+R-r*R)/((1+r)*(1+R)),2*sqrt(r*R*(1+r+R))/((1+r)*(1+R))))
M((r^2+3*r*R+r+R)/((r+1)*(r+R)),2*r*sqrt(r*R*(1+r+R))/(r^2+r*R+r+R)))
K((1+r)/(1-r),0))
になる。
(L-K) = (r+R)/(r*R+r)*(M-K)が成立しているので、L,M,Kは一直線上に存在する。
Q.E.D.
やっぱり、乱数発生させて作図させる方が面白いな。

923:132人目の素数さん
21/02/06 19:40:26.62 1P0wuzxR.net
>>881
あんたがシミュレーションすればいいだけの話。

924:132人目の素数さん
21/02/06 19:53:52.27 1P0wuzxR.net
>>881
発生させた乱数次第で接線の間に共通外接円もくるよ。
この場合でもL,M,Kは一直線上にある。
URLリンク(i.imgur.com)
問題文に、
半径の異なる2円C、Dが外接してます
とあるから、
CDが合同になるはずがない。
罵倒厨の頭じゃ半径が異なる合同な円があるらしいなぁ。

925:132人目の素数さん
21/02/06 19:58:45.78 0u90OoNC.net
相変わらずのプロおじ

926:879
21/02/06 20:00:15.43 zhXxio5A.net
>>880
L' は 半直線KL と 円C の交点(≠M)
M' は 半直線KM と 円D の交点(≠L)
です。

927:132人目の素数さん
21/02/06 20:17:11.31 hZKzhtFR.net
>>881
お前、学校かよえなかったのか?
匿名とはいえ平然と他人を「テメェ」呼ばわりするとこがいかにも頭悪そう
野次しか出来ない知能なら数学板から出て行


928:けよ ネット弁慶丸出しの小心者



929:132人目の素数さん
21/02/06 20:51:49.69 1wyI9Vw2.net
>>884
社会でも5chでも家族にも不要な存在、それがプロおじ。

930:132人目の素数さん
21/02/06 20:54:12.16 QUjmNkol.net
医者とかプロおじとかどうでもいいから数学の話しろや
どーせテメーらは全員アホなんだから

931:369
21/02/06 21:21:25.50 h7iDZ7oZ.net
そうです、
私が変なアマチュア叔父さんです ( '‘ω‘)

932:132人目の素数さん
21/02/07 00:41:38.30 Ql8xdPfs.net
こんばんは。質問です。
∮sinx/{3+(sinx)^3}dx で、積分区間が0からΠの積分を教えてください。
置換でするのがベスト?
それともlogの微分みたいなのを......?

933:132人目の素数さん
21/02/07 00:42:10.57 Ql8xdPfs.net
すいません、インテグラルがハテナになってしまってます。
m(_ _)m

934:132人目の素数さん
21/02/07 00:42:56.72 Ql8xdPfs.net
すいません、またミスです。分母のサインは3乗ではなく2乗でした!

935:132人目の素数さん
21/02/07 01:05:25.65 CLWEdyK3.net
>>889
プロおじが書き込まなければいいだけ。

936:834
21/02/07 02:04:23.90 jO6n1m8J.net
わたしが発見した定理をたくさんの方が証明していただき
ありがとうございました。
この定理は私の名前を冠するべきでしょうか。

937:132人目の素数さん
21/02/07 02:32:33.04 keQEHEmC.net
>>891-893
1/{3+sin(x)^2} = 1/{4-cos(x)^2} = (1/4){1/(2-cos(x)) + 1/(2+cos(x))}
そこで
 cos(x) = z   (-1 ≦ z ≦ 1)
とおくと
(1/4)∫{1/(2-z) + 1/(2+z)}dz = (1/4)log((2+z)/(2-z))
-1≦z≦1 で積分すると (1/2)log(3) = 0.549306144334

938:132人目の素数さん
21/02/07 05:39:28.12 n8YoqtQy.net
>>891-893
∫1/{3+sin(x)^2}dx
=∫1/{3cos(x)^2+4sin(x)^2}dx
=∫(1/{3+4tan(x)^2})(1/cos(x)^2)dx
=∫(1/{3+4((√3/2)s)^2})(√3/2)ds ((√3/2)s = tan(x) とする)
=(1/(2√3))∫(1/{1+s^2})ds
=(1/(2√3))∫(1/{1+tan(z)^2})(1/cos(z)^2)dz (s = tan(z) とする)
=(1/(2√3))∫(1/{cos(z)^2+sin(z)^2})dz
=(1/(2√3))∫dz
=(1/(2√3))z +C
=(1/(2√3))arctan(s) +C
=(1/(2√3))arctan((2√3)tan(x)/3) +C
arctan((2√3)tan(x)/3) が x=±π/2で不連続であることに注意して定積分を求める
1/{3+sin(x)^2} は 周期π で周期的だから
∫[x=0~π] 1/{3+sin(x)^2}dx
=∫[x=-π/2~π/2] 1/{3+sin(x)^2}dx
=lim(w→π/2) {(1/2√3)arctan((2√3)tan(w)/3)-arctan((2√3)tan(-w)/3)}
=(1/(2√3))(π/2-(-π/2))
=π/(2√3) = 0.9068996821171...

939:132人目の素数さん
21/02/07 08:14:46.90 mBcVq97u.net
>>882
Mのx座標の算出過程:
r/(r+R)*((1+r+R-r*R)/(1+r)-(1+r))+1+r
=(r^2+3*r*R+r+R)/((r+1)*(r+R))
のような式変形は手書きでやると括弧の対応を間違えるそうになるけどプログラム上で書くと対応する括弧が色付きで表示されるし対応してないとエラーがでる。
変数に適当に乱数を割り当てて具体的な数値計算して合致しているのを確認すればミスが防げる。
r=runif(1)
R=runif(1)
r/(r+R)*((1+r+R-r*R)/(1+r)-(1+r))+1+r
(r^2+3*r*R+r+R)/((r+1)*(r+R))

> r=runif(1)
> R=runif(1)
>
> r/(r+R)*((1+r+R-r*R)/(1+r)-(1+r))+1+r
[1] 1.439751
>
> (r^2+3*r*R+r+R)/((r+1)*(r+R))
[1] 1.439751
∴ プログラムは式変形の確認にも有用。

940:132人目の素数さん
21/02/07 10:34:44.92 mBcVq97u.net
確率が1/2だと面白くないので男女比にしてみた。
ベイズの公式の練習問題
Wikipediaによると人間の出生性比は地域、時代にかかわらず男女おおね105:100前後になる、という。
この値を使って天皇の初孫の性別を占う。
占い師が8人いて的中率はそれぞれ
 0.55,0.60,0.65,0.70,0.75,0.80,0.85,0.90である。
8人の占い師は
順に男,女,男,女,女,男,女,男
と答えた。
男児である確率は?

941:132人目の素数さん
21/02/07 10:59:10.44 yAMi+fC6.net
>>899
プロおじまだ生きてたのか�


942:B



943:132人目の素数さん
21/02/07 10:59:48.38 yAMi+fC6.net
お前はここがお似合いだよ
スレリンク(hosp板)

944:132人目の素数さん
21/02/07 14:55:38.71 fLNZevSK.net
>>895
>881にちなんで、不等半径合同円の定理(略称、罵倒厨の定理)という命名はどうだろ?

945:132人目の素数さん
21/02/07 15:03:22.05 keQEHEmC.net
別名、泣く子と地頭には勝てぬ の定理

946:132人目の素数さん
21/02/07 15:22:40.69 keQEHEmC.net
sin(x) と 1/{3+sin(x)^2} は逆順序だから
チェビシェフで
∫ sin(x)/{3+sin(x)^2} dx・∫ dy
 ≦ ∫ sin(y)dy・∫ 1/{3+sin(x)^2}dx
(左辺) = (1/2)log(3)・π = 1.72569614761  >>896
(右辺) = 2・π/(2√3) = 1.813799364234   >>897

947:132人目の素数さん
21/02/07 19:25:03.89 rPdjAmxr.net
逆順序って何?

948:132人目の素数さん
21/02/07 20:54:16.27 fIdRwScn.net
レピュニット数とその約数は、すべてそれに応じた桁ごとに区切って足すことで倍数判定できる。これは本当ですか?
111の約数(素因数)である37が3桁区切りの和、
1111の約数である101が4桁区切りの和で判定できることは確かめましたが。

949:132人目の素数さん
21/02/07 21:56:45.75 +FSt6Wwe.net
>>905
<の逆が>

950:132人目の素数さん
21/02/07 22:24:49.02 FyZVNXYF.net
1 < 10 < 100
100 > 10 > 1

951:132人目の素数さん
21/02/07 23:38:06.95 FyZVNXYF.net
>>887
俺ってネット弁慶なん?人殺しなんだけど。そのレッテル貼り根性、>>876と同レベルだな。
>>902-903
正しいと仮定して、まだ定理じゃなくて発見だろ。
結局、CD共通外接線の内側に嵌まる例やCDが合同になる例もシミュレートしてみせずか。
邪魔や水差したり茶を濁してばかりだな、この自称医者は。

952:132人目の素数さん
21/02/08 07:11:17.94 5GOalfwa.net
>>895
定理や数式での照明よりも、>875のようなのが見ていて楽しいね。
タンクトップの下に何があるか理論解を出すより、ずり下した方が楽しいのと同じ。


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch