20/12/31 11:23:51.29 J/MDu3ul.net
∠CAD = ∠A - ∠DAB = 90°- ∠DAB = ∠C (= c),
より
∠ADB = 180° - ∠ADC = c + ∠CAD = 2c,
BCを直径とする円Γを描くと
AはΓ上にある。
また、円周角の定理の逆より、DはΓの中心である。
半径R = AD = AF + FD = 36 + 14 = 50,
⊿AFE ∽ ⊿BFA ∽ ⊿BAE より
BF・EF = AF^2 = 36^2,
そこで BF = 48, EF = 27 と予想する。
∠AFE = 90°より
A (0, 36)
B (-48, 0)
D (0, -14)
E (27, 0)
F (0, 0)
とおく。AE と BD の交点より
C (48, -28)
求める面積は 714.