20/11/29 23:31:35.82 a9cXhruI.net
前スレでの経緯をまとめておきます
まず、x,y,zを変数とする方程式(3)において
変数(x,y,z)が満たすべき等式は
「x^n +y^n=z^n」と「z-x= n^{1/(n-1)}」
の両方である>>879
日高さんの主張は
「(3)のyが無理数のとき、x,y,zが整数比となるならば、(3)のyが有理数のときに整数比となる」>>603
これを言い換えると
「(x,y,z)=(sw,tw,uw)が方程式(3)を満たすとき、
(x,y,z)=(s,t,u)も方程式(3)を満たす」となる>>895
実際に代入すると
「(sw)^n +(tw)^n=(uw)^n とuw-sw=n^{1/(n-1)}」の両方が成立するとき「s^n +t^n=u^n とu-s=n^{1/(n-1)}」の両方が成立する。
と書ける。