楕円関数・テータ関数・モジュラー関数at MATH
楕円関数・テータ関数・モジュラー関数 - 暇つぶし2ch241:132人目の素数さん
21/02/02 20:00:38.04 rITzWOgb.net
基底をより具体的に表すため、θ∈S_1から始めよう
 E(φ(n,m),φ(n',m'))=<n,m'>-<m,n'>
になるようなφ:Z^g×Z^g→Lを決め、φをQ^g×Q^g→L○×Qに延長する
このときn=m^2ならば、S_(m^2)の典型的な特別基底は次の形になる
θ[α β](x)=[e]・θ(mx+φ(α,β))
但し、α,βは(1/m)Z^gのmod Z^gの代表系を動くものとする
したがって
 x→(…,θ[α β](x),…)
が、C^g/Lの正規化された射影埋め込みである


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch