20/11/26 19:14:10.05 uWYfcuV9.net
>>109
C1~*={c∈C||c|=1}と置く
写像
ρ:C1~*×R×R→GL(V) (c,a,b)→cT_a・S_b
を考えると、ρは単射で、像ImρはGL(V)の部分群
(c1T_a1・S_b1)・(c2T_a2・S_b2)
=c1c2○(a,b)T_a1+a2・S_b1+b2
(cT_a・S_b)^-1=c^-1○(a,b)T_a・S_b
つまり
(c1,a1,b1)・(c2,a2,b2)=(c1c2○(a1,b2),a1+a2,b1+b2)
(c,a,b)^-1=(c^-1○(ab),-a,-b)
C1~*×R×Rの上記の群構造をGと書く
GをHeisenberg群と呼ぶ
●命題3.4
1)群Gの中心はC1~*(=C1~*×{0}×{0})である
2)群Gの交換子群[G,G]はC1~*である
C1~*はGの中心であるので正規部分群であり
商群G/C1~*は2次元ベクトルの加法群R×Rである
つまり以下は完全列である
1→C1~*→G→R×R→0
量子力学における有名な定理
★定理3.1(von Neumann-Stone)
Gの既約ユニタリ表現 ρ:G→GL(W) で、
任意のc∈C1~*について ρ(c)=cId_W となるものが、
同型を除いて唯一つ存在する
(Id_WはWの恒等写像)