20/12/03 15:27:49.28 2ZeVJUXr.net
連立不等式を数直線で表した時に2つの式の点が重なることってあります?
例えば2以上と2未満ではなく2以上と2以下みたいな感じです
892:ID:1lEWVa2s
20/12/03 15:55:29.61 O2aNSrkD.net
>>858
作図してみればいいんじゃないの。
知らんけど以後プロの解答を待つ。
893:ID:1lEWVa2s
20/12/03 15:57:53.72 O2aNSrkD.net
ってかそれζ関数じゃ。
894:ID:1lEWVa2s
20/12/03 15:58:28.02 O2aNSrkD.net
しかもオイラー積の分布の。
895:ID:1lEWVa2s
20/12/03 16:15:27.50 0LqMhcdS.net
ってかそれ数直線じゃなくね。
896:132人目の素数さん
20/12/03 16:39:26.39 IN+cK3OO.net
>>858
連立不等式って、1変数の話でしょ?
2つの式の関係にそもそも制約なんて無いから、そういう事もあるよ
まぁ答え欄にしっかり1領域にまとめて書かないとだめだけど
x <= 2, x >= 2 とかなら、
答えは「すべての実数」
URLリンク(www.youtube.com)
897:132人目の素数さん
20/12/03 18:10:36.37 2ZeVJUXr.net
>>863
産駒付す
898:132人目の素数さん
20/12/04 01:42:48.18 ttgUdtX5.net
>>855
高校数学の題材を高校で習う手段以外で解いてもいいと思う、
ただそれだけ。
異論があるのは認めるが、自分で扱えなきゃスルーすればいい。
確率の問題とかシミュレーションできたら検算になるし、シミュレーションプログラムを組んでいると解析解に至ることもある。
シミュレーションで一般解を予想して数学的帰納法で証明とか。
証明は達人がやってくれることが多い。
899:132人目の素数さん
20/12/04 01:49:05.32 ttgUdtX5.net
>>844
沢山症例を集めれば有
900:意差がでるけど その有意差が臨床的に意義があるかを判断するのが臨床医学なんだね。 ある疾患の男女比とか。 例をあげれば、 甲状腺疾患では男女差は有意。 インフルエンザ患者も全員調査すれば男女差がでるだろうけど インフルエンザの罹り易さに鑑別診断に役立つ男女差があるかというのは別の話。
901:132人目の素数さん
20/12/04 07:26:52.95 cBNq6pVK.net
お、プログラムおじさん長文書いてきたなw
902:132人目の素数さん
20/12/04 07:28:07.33 cBNq6pVK.net
けど相変わらずあんまり通じてないな...
903:132人目の素数さん
20/12/04 13:11:49.85 tMX0OnhD.net
相手の言うことに反応してるわけじゃなくて自分の書きたいこと好きなように書いてるだけやからな
904:132人目の素数さん
20/12/05 18:12:16.21 lnsNFcTM.net
プロおじ最近見かけないと思ったが書いてはいるのね
共有banが仕事したのかな
905:132人目の素数さん
20/12/07 15:41:32.61 qu3/sB2X.net
>>857
う~む、最近はBOSSに押されてるなぁ…
URLリンク(www.suntory.co.jp)
906:132人目の素数さん
20/12/07 22:19:02.39 CU+4ckWm.net
>>870
ちょっと、本業が忙しくなってきた。近隣の病院の職員にも新コロナがでて身近に迫ってきているのを日々実感している。
907:132人目の素数さん
20/12/08 00:35:31.46 YmeuZYbR.net
お前が出来るのは新型コロナ感染疑惑遺体の新型コロナ感染CTスキャン検査作業だろ、検査判断は別人が行うんだろ
908:132人目の素数さん
20/12/08 07:17:27.93 gNFEI7kW.net
>>601
イナさんは理二ですか?東大の理科は化学、生物で受けたのですか?
909:132人目の素数さん
20/12/08 10:01:51.72 4aN8y6Kd.net
>>873
autopsy imagingはプロトコール通りやると大変だぞ。
やったことないんだろうけど。
910:132人目の素数さん
20/12/09 14:58:26.06 nv/1M1Kw.net
CTがないころは、不審死体に後頭下穿刺して血性だったら脳卒中、そうでなければ心筋梗塞で死亡診断書を書いていたなぁ。
一件3000円だったかな警察から検死協力として謝礼が振り込まれていた。
いまは、Ai(Autopsyimaging:死亡時画像診断)で代用。
911:イナ
20/12/10 04:53:03.03 zKFlA30/.net
前>>601
>>874
理2、物理と化学。
現役のときは理1だったと思う。
912:132人目の素数さん
20/12/12 19:38:33.81 02iPCoZX.net
連続する2つの偶数の積は
間の奇数の自乗から1を減じた数
8の倍数
8と三角数の積
これらすべては同時に証明できますか?
913:132人目の素数さん
20/12/12 19:40:35.80 02iPCoZX.net
>>878
つまり、8で割ると必ず三角数になる、ということです。
914:132人目の素数さん
20/12/12 19:43:30.03 02iPCoZX.net
逆に言えば、三角数の8倍は連続する2つの偶数の積で表せるということでもあります。
915:132人目の素数さん
20/12/12 23:16:57.20 q29CG4NN.net
同時の意味は?
1語で表すのは無理
1ページなら簡単
1つの論理式に詰め込むのも簡単
916:132人目の素数さん
20/12/13 12:26:55.66 21pw+WJh.net
3つの連続した三角数について質問します。T(n),T(n+1),T(n+2)同時に割り切れるのは1だけであることと
T(n+1)/gcd(T(n),T(n+1))=gcd(T(n+1),T(n+2))
gcd(T(n),T(n+1))=T(n+1)/gcd(T(n+1),T(n+2))
が成り立つことは
どのように証明したらいいですか?
917:132人目の素数さん
20/12/13 12:30:20.39 KIj6BLC3.net
わからないんですね
918:132人目の素数さん
20/12/13 13:12:16.07 OHI65L2g.net
当たり前
そ�
919:黷ェ分からんのか?
920:132人目の素数さん
20/12/13 20:03:30.20 Fq7wqPea.net
>>878
1行で表わせば (2n+1)^2 - 1 = 2n(2n+2) = 8{n(n+1)/2} = 8(1+2+・・・・+n)
921:132人目の素数さん
20/12/13 20:26:31.29 Fq7wqPea.net
>>882
T(n) = 1+2+・・・・+n = n(n+1)/2,
gcd( T(n), T(n+1) ) = gcd( n(n+1)/2, (n+1)(n+2)/2 )
= (n+1)・gcd(n/2, (n+2)/2) = n+1 (n:偶数)
= (n+1)/2・gcd(n, n+2) = (n+1)/2 (n:奇数)
gcd( T(n), T(n+1) )・gcd( T(n+1), T(n+2) ) = (n+1)(n+2)/2 = T(n+1),
922:132人目の素数さん
20/12/13 20:35:43.03 Fq7wqPea.net
gcd(T(n), T(n+1)) は T(n+1) - T(n) = n+1 の約数。
∴ 3つ同時に割り切るのは1だけ。
923:132人目の素数さん
20/12/13 21:41:11.18 fdmTPymQ.net
>>870
ここで言われてるプログラムおじさんは医療・医者板でウリュウと言われてる医者コンプジジイと同一人物。
あちらでも得意げにこことほぼ同様なプログラムを書き込んでるからな。もちろん医者でないのは明らかなため、まるで相手にされていない。
924:132人目の素数さん
20/12/13 22:00:27.07 zkEDAmbd.net
臨床検査技士の医師を気取った知ったかぶりは
バレたらマジで自殺するレベルに深刻な恥を思い知る事に成り、危険
925:132人目の素数さん
20/12/13 22:42:24.43 q65o9b/I.net
完全なpdやな
どうやって食ってるんやろ
どうでもいいか
926:132人目の素数さん
20/12/14 00:28:25.74 AXlkDJKS.net
11の倍数判定で、十の位から2桁ごとに10倍して足し合わせるという方法があまり使われないのは何故ですか?
各位を交互に足し引きとか、3桁区切りとかより簡単な方法にもかかわらずです。
各位の剰余と数字和を駆使すれば、たいていの倍数判定が理論上は可能になるはずです。
そもそも9(3)の倍数が数字和で判定できるというのも、各位の剰余が等しく1だからに過ぎないわけで。
927:132人目の素数さん
20/12/14 09:50:29.58 JlZQiolB.net
>>888
スレリンク(hosp板)
本人降臨しましたw
928:132人目の素数さん
20/12/14 11:03:31.14 Ug+dixWb.net
>>891
例えば244827という数に対してそれぞれ具体的に計算過程を書くとどうなります?
929:132人目の素数さん
20/12/15 09:37:27.90 r/AwnUKu.net
(n+1)進法で
n ≡ n^3 ≡ n^5 ≡ ・・・・ ≡ -1 (mod (n+1))
n^2 ≡ n^4 ≡ ・・・・ ≡ 1 (mod (n+1))
930:132人目の素数さん
20/12/15 11:53:11.53 pUgSXvXC.net
>>893
24+48+27=99
だね
つまり偶奇の桁の合計
2+4+2=8
4+8+7=19
で19-8=11とするのとどっちがってこと
自分は±使っていたけど負の数が出て来ると
頭がヒートアップしていた
けど2桁の合算もヒートアップしそうかも
ところで7とか13の倍数のときは
6桁ずつ足すの?>891の人
931:132人目の素数さん
20/12/15 11:55:17.70 pUgSXvXC.net
あと±だとこの桁足すんだっけ引くんだっけと戸惑うことも
2桁ずつでも2桁の区切りを間違えると戸惑うかも知れない
932:132人目の素数さん
20/12/15 15:32:36.94 WE4voce6.net
>>889
臨床検査技士が内視鏡をやったら医師法違反でタイーホされるぞ。
国立医学部卒の意見を拝聴してみましょう。
スレリンク(hosp板:73番)
73 卵の名無しさん sage 2020/06/23(火) 13:24:47.79 ID:riQXI/fH
宮廷卒だけど、一括りに医師免許と言ってるが、私大卒など医者とは思ってへんよ
私大入学というインチキ
933:を経由したイシャモドキが、あんま調子のんなや
934:132人目の素数さん
20/12/15 16:12:36.11 +QVHKwwn.net
でもお前5chしかやってない穀潰しじゃん
935:132人目の素数さん
20/12/15 16:14:03.52 +QVHKwwn.net
スレリンク(hosp板)
ここだけでも26レスしてる5chしかやることがない穀潰し
医者どころか社会人ですらない
936:132人目の素数さん
20/12/15 16:46:13.21 jHFbK4cr.net
角Aが40度で、角Bが直角である三角形ABCにおいて、
辺BC上に、角BAD=25度になるように点Dをとると、BD=1となった。
AD=aとおくとき、ACの長さをaで表したものとして正しいのはどれか。(選択肢略)
答えは「a^2/2」で、まあそれは簡単に分かるのですが、
ほかの表し方もあるはずで、他にどのような表し方があるか、何か例があれば教えてください。
937:132人目の素数さん
20/12/15 17:09:57.11 EEJdUeoc.net
>>895
1の位の数字の4倍と、1の位を除いてできる数との和が13の倍数ならもとの数は13の倍数
1の位の数字の5倍と、1の位を除いてできる数との差が17の倍数ならもとの数は17の倍数
938:132人目の素数さん
20/12/15 17:13:23.08 EEJdUeoc.net
1の位の数字の2倍と、1の位を除いてできる数との差が7の倍数ならもとの数は7の倍数
939:132人目の素数さん
20/12/15 17:26:29.14 MCR8i3sD.net
>>900
> ほかの表し方もあるはず
なんでそう思ったの?
940:900
20/12/15 17:48:22.48 jHFbK4cr.net
>>903 値の決まっているものをあえて文字aとおいているためです。
例えば、900の問題をまねて
角Aが60度で、角Bが直角である三角形ABCにおいて、
辺BC上に、角BAD=30度になるように点Dをとると、BD=1となった。
AD=aとおくとき、ACの長さをaで表せ。
という問題を作ると、この場合a=2であって、またACは2√3です。
ただ、あえて文字aを使っているので、AC=(√3)a や、AC=√(a+10) など
いろんな(aの式としても全く別物の)表し方ができてしまいます。
941:132人目の素数さん
20/12/15 17:48:29.22 y8pLkgfH.net
s=((x2-x1)^2+(y2-y1)^2)^0.5
x2、x1、y2、y1はyの1番、xの1番とかです。0.5は二分の一のことです。
sをx1.x2.y1.y2で偏微分してください。お願いします。できれば、途中式もお願いします。
942:132人目の素数さん
20/12/15 21:07:33.48 WE4voce6.net
>>898
これ、俺の投稿
当直医のスレ Part 27
スレリンク(hosp板:966番)
966 名前:卵の名無しさん[sage] 投稿日:2020/12/13(日) 21:48:11.32 ID:a5uRjCQR
10件から断られたという独居老人の救急を受けることにした。
GOTO客を診るより低リスクと判断。地雷かもしれん。
これも
当直医のスレ Part 27
スレリンク(hosp板:968番)
968 名前:卵の名無しさん[sage] 投稿日:2020/12/14(月) 07:00:06.90 ID:7NcwsnDq
救急車3台受けて入院させたので諭吉3枚追加。
これでTボーンステーキとModern Epidemiologyの第4版が買えそう。
943:132人目の素数さん
20/12/15 21:20:32.33 IXzRvpqG.net
>>906
朝、昼、夜と複数のスレに書き込んで随分と暇そうな当直ですねぇ笑
944:132人目の素数さん
20/12/15 21:28:49.05 5Y6mC4+Z.net
>>905
Wolfram でやれ
945:132人目の素数さん
20/12/15 21:40:08.50 C40EAD3v.net
>>902
初耳ですね。10の位以上を3倍して1の位を足す方法なら知っていますが。
946:132人目の素数さん
20/12/15 21:44:38.90 C40EAD3v.net
>>901
初耳�
947:ネので証明をお願いします。素数の倍数判定は極めて難しいとは思いますが。
948:132人目の素数さん
20/12/15 22:17:11.79 C40EAD3v.net
>>893
27+44+28
>>901
とりあえず式変形してみましたが、証明できませんでした。
9と3とか、11と4で13や17に結びつくわけがない。
949:132人目の素数さん
20/12/15 22:24:54.19 mFmDd1gs.net
>>911
これを示すのは簡単でしょう
Nの下1桁をaとすれば N = 10A+b なる自然数Aが取れる
全部同じ方法でいけるので 以下を示すだけにします
「1の位の数字の4倍と、1の位を除いてできる数との和が13の倍数ならもとの数は13の倍数」
1の位はbであり 1の位を除いてできる数はAであり もとの数はNである
N = 10(A+4b) - 39b と変形できて A+4b と 39b は共に 13の倍数だから
Nも当然13の倍数となる
950:132人目の素数さん
20/12/15 22:26:37.95 mFmDd1gs.net
>>912
2行目タイプミス
Nの下1桁をaじゃなくてbとしといてください
951:132人目の素数さん
20/12/16 04:40:26.39 0UQdpfZM.net
0<a/2a+1<1の答えはa<-1,0<aになるのですが途中計算を教えて下さい!
952:132人目の素数さん
20/12/16 08:34:00.71 1LgcsJjm.net
>>914
場合分けして地道に計算
953:132人目の素数さん
20/12/16 09:05:19.48 hdbfhvcH.net
>>915 場合分けの境は1/aですね?
954:132人目の素数さん
20/12/16 09:08:53.86 1LgcsJjm.net
>>916
真ん中のところはa/(2a+1)なんでしょ?
だから2a+1の正負で場合分け(2a+1=0は除外)
1/aか? ちゃんと計算してみれ
955:132人目の素数さん
20/12/16 09:17:21.23 hdbfhvcH.net
>>914
3箇所(2a+1)2乗で解決する事が分かりました
956:132人目の素数さん
20/12/16 09:39:38.81 yTJ0Pwpk.net
>>910
10=3 mod 7
3*(-2)=1 mod 7
10a+b=0 mod 7 ⇔ 3a+b=0 mod 7 ⇔ a-2b=0 mod 7
ただこれだと桁数多い時に反復になるから面倒なのと
余り0しかdetectできないから
7で割った余りを求めるには3倍して7で割る必要があって
それも反復になるのも面倒
957:132人目の素数さん
20/12/16 09:46:58.45 yTJ0Pwpk.net
>>919
まちがいた>>909への説明
mod 13は
10=-3
(-3)*4=1
10a+b=-3a+b=0 ⇔ a+4b=0
mod 17は
10=-7
(-7)*(-5)=1
10a+b=-7a+b=0 ⇔ a-5b=0
いずれも多桁と余りで面倒なのは7と同じ
958:132人目の素数さん
20/12/16 09:56:09.29 9peauMpa.net
10人で1回のジャンケンをする。
(1)あいこになる確率はいくらか?
(2)勝った人の人数の期待値はいくらか?
959:132人目の素数さん
20/12/16 10:10:10.33 HqGbGj9G.net
>>921
n人の場合を考える (n≧2)
k人残る確率は n C k / 3^(n-1) (1≦k≦n-1)
よってアイコの確率は余事象を考えて 1 - (2^n-2)/(3^(n-1))
期待値は
Σ[k=1,n-1]k*n C k / 3^(n-1) + n*(1 - (2^n-2)/(3^(n-1)))
= n*(2^(n-1)-1)/3^(n-1) + n*(1 - (2^n-2)/(3^(n-1)))
= n(3^(n-1)-2^(n-1)+1)/3^(n-1)
960:132人目の素数さん
20/12/16 10:42:00.21 9peauMpa.net
>>922
勝った人数の期待値は
n - n*(3^(n-1)-2^(n-1)+1)/3^(n-1)
だと思うが。
961:132人目の素数さん
20/12/16 10:55:48.71 HqGbGj9G.net
>>923
自分が求めたのはあなたの言葉で解釈するなら「残った人数」の期待値のようだ
n人残ったときを n人勝ち残ったと解釈すれば 私の値になるし
勝った人数を0と解釈すれば あなたの値になるでしょう
962:132人目の素数さん
20/12/16 12:45:16.42 tiSO3HLv.net
>>891
33や99の倍数はこの方法だと一発で分かる
963:132人目の素数さん
20/12/16 14:29:13.17 V0wCULOI.net
>>891がどんな方法か
さっぱりわからない
964:132人目の素数さん
20/12/16 14:46:39.14 qVLxQ+sV.net
>>921
勝負がつくのは10人のジャンケンの手が2種類のときだから、アイコになるのは2種類でないときを使ってシミュレーションプログラムが簡単に書ける。
> j = function(n=10) length(unique(sample(3,
965:n,re=T)))!=2 > mean(replicate(1e7,j())) [1] 0.9480994
966:132人目の素数さん
20/12/16 15:09:07.48 qVLxQ+sV.net
>>927
ジャンケンの手の出し方は3^10=59049通りなので、勝者の数を指折り数えると
0 1 2 3 4 5 6 7 8 9
55983 30 135 360 630 756 630 360 135 30
勝者数=0(アイコ)になるのは55983/59049=0.948077
967:132人目の素数さん
20/12/16 15:17:00.17 tiSO3HLv.net
したがって>>895だと
この時点で99の倍数であると分かる
244827/99=2473
968:132人目の素数さん
20/12/17 12:03:37.84 5h35XD1o.net
∫x/(x+1)^2dx
を、部分積分で計算できないかと思ったのですが、置換積分で計算したときと答えが同じになりません。どこが間違っていますか?
∫x/(x+1)^2dx
= ∫x*1/(x+1)^2dx
=-x/(x+1)+ ∫1/(x+1)dx
=-x/(x+1)+log|x+1|+C
ちなみに、置換積分では
log|x+1|+1/(x+1)+C
となりました。
969:132人目の素数さん
20/12/17 12:55:53.52 js7QVUh1.net
>>930
積分定数の差はあるけど同じ結果ですね
-x/(x+1)+log|x+1|+C
においてC=1+Dとおくと,
-x/(x+1)+log|x+1|+1+D
=log|x+1| + 1-x/(x+1) +D
=log{x+1| + (x+1 - x)/(x+1) + D
=log|x+1| + 1/(x+1) + D
970:132人目の素数さん
20/12/17 13:05:59.78 5h35XD1o.net
>>931
なるほど!よくわかりました。ありがとうございます。
ちなみにこれは数検の過去問で出てきた問題なのですが、部分積分で解いた答えを書いても正解になるということですか?
971:132人目の素数さん
20/12/17 13:20:05.57 js7QVUh1.net
>>932
数検については良く知らないですが、これを誤答とする理由は全くないと思います
972:132人目の素数さん
20/12/17 14:23:01.99 Uzmxe4V9.net
>>933
そうなんですね。ありがとうございました!
973:132人目の素数さん
20/12/17 18:05:11.08 1+tWiiEa.net
>>905
s^2 = (x2 - x1)^2 + (y2 - y1)^2,
2s ds = 2(x2 - x1)(dx2 - dx1) + 2(y2 - y1)(dy2 - dy1),
ds = {(x2 - x1)/s}(dx2 - dx1) + {(y2 - y1)/s}(dy2 - dy1) = ・・・・
974:132人目の素数さん
20/12/17 18:52:01.42 1+tWiiEa.net
>>930
部分分数
x/(x+1)^2 = 1/(x+1) - 1/(x+1)^2,
975:132人目の素数さん
20/12/18 11:55:38.06 GaGlzGOX.net
お前ら raw text の数式見にくくないの?
液タブ買ったけど、ノートを全部電子化できるし、
今コロナもあって、教育系のネット教材爆増してるから、なにかと便利だぞ
まじおすすめ
書いてすぐにアップロードして投稿とか、いろいろ自動化しようとすると時間食うかもしれんけど
今でも基本各種試験は(マークシートだとしても)手書きで計算するし、
無限キャンバスで空間を気にすることなく書き込める
今すごく進化してて、普通に紙に書くみたいに書ける
iPad でも良いと思う
すごい発見したのに余白が足りなくて書き込めなくなるなんてこともないぞ
なんか長文になったけど、コピペじゃないぞ
976:132人目の素数さん
20/12/18 13:19:04.44 zWAuxkQC.net
10人から5人の勝者をジャンケンで選ぶのに、
10人同時にジャンケンして5人が勝ち5人が負ける手がでるまでジャンケンを繰り返すことにする。
勝者が決まるまでの回数の期待値は2187/28(約78.1)である。
勝者が決まるまでの回数を当てる賭けをするとき、いくつに賭けるのが最も有利か?
977:132人目の素数さん
20/12/18 17:34:23.14 lqfv0UNh.net
一回で決まらない確率をpと置くと、n回で決まる確率f(n)は、p^(n-1)*(1-p)
これは減少関数だから初回に掛けるのが最も有利
978:132人目の素数さん
20/12/18 19:21:21.60 /IHOLbez.net
>>939
正解
979:。 でも、期待値78回ときくと自分の直感に反するんだよなぁ
980:132人目の素数さん
20/12/18 22:23:24.85 QwESrhN8.net
3x^2 - 4xy + 3y^2
上記の式を平方完成して
3(x - 2/3)^2 + 5/3 y^2
の変形はわかるのですが、
5/2(x - y)^2 + 1/2(x + y)^2
この式へも変形できるようで、どういった順序で変形していくのでしょうか
981:132人目の素数さん
20/12/19 03:43:15.80 9N3R0GXy.net
3x^2-4xy+3y^2=(5/2+1/2)(x^2+y^2)-(5/2-1/2)2xy=5/2(x-y)^2+1/2(x+y)^2
982:132人目の素数さん
20/12/19 08:42:59.12 R1pciRfP.net
>>941
地道にやってみた。
a*x^2+b*x*y+a*y^2 = p*(x+y)^2 + q*(x-y)^2
a=p+q
b=2*(p-q)
を解いて
p = (2*a + b)/4 ,
q = (2*a - b)/4
983:132人目の素数さん
20/12/19 09:36:22.60 Bev8+26A.net
>>942
>>943
お二方ありがとうございます。
ここで書いてあるような変形は何か名前がついているのでしょうか
984:132人目の素数さん
20/12/19 10:46:37.49 5cwu37XM.net
与式がx,yに関して対称なので2直線y=xとy=-xが座標軸になるように座標変換しようということ
985:132人目の素数さん
20/12/19 13:41:01.63 amYITPRh.net
45°回転 と名付けよう…
986:132人目の素数さん
20/12/19 19:13:31.36 SJyvLC3u.net
100a+10b+c=99dが成り立つとき、
a+b+c=9eとなる整数値があることは証明できますか?
987:132人目の素数さん
20/12/19 19:32:55.28 OOu9Eqaq.net
100a+10b+c=99d が成立していたとすれば
(a+b+c)+9(11a+b) = 99d より a+b+c は9の倍数となっている
証明おわり たったこれだけでOK
988:132人目の素数さん
20/12/19 19:46:04.53 SJyvLC3u.net
>>948
では、a-b+c=11fを証明できますか?
989:132人目の素数さん
20/12/19 22:16:33.51 OlR4vkHq.net
P( sec(t)-sin(t), cos(t) ) tは0~pi/4
このPの軌跡って図形的な由来は分かれますか?
何がナニしたときの点の軌跡なんでしょう?
990:132人目の素数さん
20/12/19 22:49:32.49 9/qPMwhC.net
>>949
0=99d-100a-10b-c
両辺にa-b+cを足して整理してみれ
991:132人目の素数さん
20/12/20 01:59:53.32 2d+MIuRZ.net
111は37×3で表せる合成数ですが、わざわざ素数37の倍数判定するより、3桁区切りの和を出した方が手っ取り早く判定できる。そういった合成数の代表的なものは他にありますか?2、5、10の累乗や33や99などのゾロ目数以外で。
992:132人目の素数さん
20/12/20 03:10:48.74 2GKFpzxt.net
>>945
興味が沸いたので
n=1,2,3,....,10として
# 黒 3x^2 - 4xy + 3y^2 = n
# 赤 (5/2)*x^2 + (1/2)*y^2 = n
のグラフを書いてみた。
URLリンク(i.imgur.com)
# R言語のソース(おまけ)
f0 <- function(x,y) (5/2)*(x - y)^2 + (1/2)*(x + y)^2
f1 <- function(x,y) (5/2)*x^2 + (1/2)*y^2
x=y=seq(-5,5,by=0.01)
z0=outer(x,y,f0)
z1=outer(x,y,f1)
contour(x,y,z0,levels=1:10,asp=1,bty='n')
contour(x,y,z1,col=2,levels=1:10,add=T)
abline(a=0,b=1,lty=3,col=8)
abline(a=0,b=-1,lty=3,col=8)
993:132人目の素数さん
20/12/20 03:15:42.82 2GKFpzxt.net
ついでに、
# 黒 3x^2 - 4xy + 3y^2 = 10
# 赤 (5/2)*x^2 + (1/2)*y^2 = 10
# 青 (5/2)*y^2 + (1/2)*x^2 = 10
も書いてみた。
URLリンク(i.imgur.com)
994:132人目の素数さん
20/12/20 03:48:10.03 2GKFpzxt.net
>>950
作図だけしてみた。何の軌跡かは知らん。
URLリンク(i.imgur.com)
995:132人目の素数さん
20/12/20 05:43:42.03 SzVTbuTy.net
>>952
「手っ取り早く判定できる」というのが曖昧で難しい
もしこれを計算機科学的�
996:ネ意味でいってるとすれば一筋縄ではないかない問題だろう そもそも桁区切りで倍数の判定をすることは必ずしも計算量を小さくするのだろうか しかしながら単に「桁くぎりで倍数判定できる」という意味なら 10と互いに素な任意の自然数は必ずそのような判定を持つ : Mを10と互いに素な整数M>1としよう ある正の整数nが存在して 10^n≡1 (mod M)となる このとき Mの倍数判定法はn桁区切りで可能である 以下は具体例である 要望どおり合成数であり,ゾロ目でないものだけ 4桁区切り → 303, 909 5桁区切り → 123, 369, 813, 2439 6桁区切り → 21, 39, 63, 91, ... (たくさんあるので略) 7桁区切り → 717, 2151, 13947, 41841 ... 一般には 10^n-1(n>1)の形の数を素因数分解することで 条件を満たすn桁区切りで判定できる新しい数を必ず選ぶことができる (もし合成数とかゾロ目とかいうこだわりがないなら約数全部取ってくれば十分)
997:132人目の素数さん
20/12/20 05:54:02.82 SzVTbuTy.net
>>956
ちょっと修正 ゾロ目でないという条件は
運がわるい場合は あるnでは満たされない
具体的には 10^n-1が素数の9倍になるケース
このケースが発生した場合はゾロ目条件をクリアする約数は取れない
たとえば「19桁区切りだけで判定できるゾロ目でない合成数は存在しない」
998:132人目の素数さん
20/12/20 09:25:15.27 2GKFpzxt.net
>>955
修正
0<t<pi/4だから45°までだった。
URLリンク(i.imgur.com)
999:132人目の素数さん
20/12/20 11:15:05.58 2d+MIuRZ.net
>>956
10と互いに素な自然数ならこの方法で倍数判定できる、これは初めて知りました。
つまり、1の位が5でないすべての奇数にあてはめられると考えて問題ないと。
7,11,13が3桁区切り、11,33,99が2桁区切りで判定できるのもそういうことですね。
もっと言えば3と9も。
4桁区切りの303,909は101にもあてはまることは薄々わかります。合成数という条件なので挙がらなかったのは理解していますが。
5桁区切りの41,271も然り。
あとは法則性が自分には理解不能です。
しかるに、n桁区切りの和で判定できる素数があるとすれば、その3倍、9倍まで同じ方法で判定できるという仮説が立ちましたが、正しいですか?
1000:132人目の素数さん
20/12/20 11:36:33.55 2d+MIuRZ.net
すみません、ふと考えついて計算してみると、37も3桁区切りの和で判定できました。
任意の素数と、その3の累乗の積すべてに成り立つようです。
1001:132人目の素数さん
20/12/20 12:03:29.62 2d+MIuRZ.net
>>957
11,33,99のことですか
1002:132人目の素数さん
20/12/20 13:05:36.12 hLR+8abZ.net
>>900 の答えがa^2/2になるのが求められない。
ほんとに簡単なの?
1003:132人目の素数さん
20/12/20 15:39:47.46 bV4o19Ho.net
会話の途中にすみません
cosxtanxをsinxとしても良いのですか?cosx=0の時にダメな気がしますが...
1004:132人目の素数さん
20/12/20 16:54:11.43 78kdZrim.net
>>963
tanxをとりあげている時点でcosx=0は除いて考えてるんでないか?
1005:132人目の素数さん
20/12/20 18:56:16.05 soyuE02I.net
>>963
へ?
1006:132人目の素数さん
20/12/20 22:11:30.27 2GKFpzxt.net
>>962
作図してみた。
URLリンク(i.imgur.com)
1007:132人目の素数さん
20/12/21 16:23:21.30 lrdcuj5v.net
四分位数の説明でこんな動画があります
URLリンク(youtu.be)
冒頭説明で円を区切った時2 : 2.5 : 2.5 : 2になってますが
実際は2.25 : 2.25 : 2.25 : 2.25ですよね?
それとも考え方的に本当に2 : 2.5 : 2.5 : 2になるんですか?
1008:132人目の素数さん
20/12/21 17:04:06.49 QwfL3djT.net
>>967
①②③④⑤⑥⑦⑧⑨のど真ん中が⑤
1009:、 このとき、下半分は①②③④と考え、その中央値は②と③の平均というように考えるようだ https://bellcurve.jp/statistics/course/19277.htmlの四分位数の求め方(データの個数が奇数個の場合)の2.を読んでみて ただし、四分位数にはいくつかの流儀があるらしく、常にこの考え方をするとは限らないらしい そのビデオは肝心の所を説明していない
1010:132人目の素数さん
20/12/21 17:10:32.60 QwfL3djT.net
>>967
URLリンク(kou.benesse.co.jp)
進研ゼミのサイトでは先に示したサイトと同じ考え方をしている
URLリンク(mathtrain.jp)
このサイトでは別の考え方をしている
1011:132人目の素数さん
20/12/21 17:13:21.41 QwfL3djT.net
URLリンク(oku.edu.mie-u.ac.jp)
このサイトによれば教科書にも「四分位数の定義は他にもいくつかある」と書かれているんだそうだ
受験では扱われないんじゃないかな
1012:132人目の素数さん
20/12/21 17:59:22.08 lrdcuj5v.net
>>968-970
基本的にはyoutubeので合ってるっていう感じなのですね
教えていただいたサイトも大変参考になりました
どうもありがとうございます
1013:132人目の素数さん
20/12/21 18:38:08.29 Wnzb5Qvh.net
>>970
Rのquantileのhelpファイルには9通りの求め方が解説されている。
結局、こんな漢字で分布図を書くのが一番なのだろうと思う。
URLリンク(i.imgur.com)
1014:132人目の素数さん
20/12/21 19:27:01.48 3IJNz5dW.net
>>962
(問題再掲)
>角Aが40度で、角Bが直角である三角形ABCにおいて、
>辺BC上に、角BAD=25度になるように点Dをとると、BD=1となった。
>AD=aとおくとき、ACの長さをaで表したものとして正しいのはどれか。(選択肢略)
辺BCをB側に延長し、延長上に点Eを∠BAE=25°になるようにとる。
△ACEと△EADはともに頂角50°の二等辺三角形、ゆえに相似。
よって AC:AE=EA:ED. よってAC:a=a:2 。
1015:132人目の素数さん
20/12/21 20:23:09.44 Q5aeJyqj.net
>>973
ACの長さは数値として出てくる。
URLリンク(i.imgur.com)
> u=pi/180
> (a=1/sin(25*u))
[1] 2.366201583152499
> (AB=1/tan(25*u))
[1] 2.144506920509559
> (AC=AB/sin(50*u))
[1] 2.799454966056695
ちなみに
> a^2/2
[1] 2.799454966056695
>
1016:132人目の素数さん
20/12/21 20:28:21.91 UyQPwxUY.net
数学の概念なんて場合によって色々変わるのなんて日常茶飯事だけど受験数学は別
ルールブックである限定教科書の定義が絶対
1017:132人目の素数さん
20/12/21 22:58:52.73 KXLaVKed.net
>>975
高校の教科書だと自然数は0じゃなく1からって言う謎ルールあるよね
0からでも1からでも良いよってことにして違いが重要なときには正の整数とか非負整数とか言えばいいのになぁと思う
1018:132人目の素数さん
20/12/22 01:29:51.62 SuKWvRxA.net
普通はそうじゃん
1019:イナ
20/12/22 01:39:15.97 skBdmmjJ.net
前>>877
>>900
△ABCにおいて正弦定理より、
AC/sin90°=AB/sin50°
AC=AB/sin(25°+25°)
=√(a^2-1)/(sin25°cos25°+cos25°sin25°)
=√(a^2-1)/[(1/a){√(a^2-1)/a}+{√(a^2-1)/a}(1/a)]
=a^2/2
ごめん、同じになる。
1020:イナ
20/12/22 01:59:27.50 skBdmmjJ.net
前>>978
a=1/cos65°
=2.36620158315……
1021:132人目の素数さん
20/12/22 11:39:04.12 sXzlmwJc.net
教科書に定義はいろいろあると書かれているなら受験で出す場合は問題文で定義を示すことになるだろな
1022:132人目の素数さん
20/12/22 12:41:01.45 OmsoSO86.net
もちろん高校数学の検定教科書の4
1023:分位数の定義は全部統一されてるし、受験問題で定義が載せられることもない
1024:132人目の素数さん
20/12/22 12:54:19.75 A1IbNhvu.net
箱ひげ図がローソク足に見える
なんで江戸時代にできたローソク足の定義を1970年代に上書きされなきゃならんのだろう
1025:132人目の素数さん
20/12/22 14:09:06.27 l29QQJeL.net
黒い箱ひげ図w
1026:132人目の素数さん
20/12/22 14:40:43.12 IP6Zdpno.net
>>900
三倍角の公式を持ちいて sin25 が満たす3次法廷式を考えると
答えを ((√2+√6)a^3+16)/24 と表すこともできるな。
1027:132人目の素数さん
20/12/22 16:25:22.87 676gkqOB.net
>>900
t = AC とおく
tは代数的数であるから いくらでも表現を得ることができる
今回は t^6-72t^5+420t^4-896t^3+864t^2-384t+64 = 0
これを用いればいくらでも有理数係数多項式の形の表現を得ることができる
f(x) = (x^6-72x^5+420x^4-896x^3+864x^2+64)/384 とおくと
t = f(t) が成立するので
nを任意の非負整数として fのn回合成f^nを考えて
t = f^n(t) が成立するから t = a^2/2 より t = f^n(a^2/2) を得る
ただ,このような例は代数的に意味のある表現とはいえない
>>984 の挙げているような例のほうが面白い
1028:132人目の素数さん
20/12/22 20:40:13.33 tfE2Xo7E.net
2変数関数の最小値(a>0、b>0)
a(x+cy+d)^2+b(y+e)^2+k
これでabcdekを定数としてカッコ内が0のときkが最小値なのはわかるんですが
なぜaとbが0より大きくなければいけないんですか?
カッコ内が0なら正負関係なく最小値はkだと思うんですが
黃チャートの例題の解説文からです
1029:132人目の素数さん
20/12/22 20:41:14.75 tfE2Xo7E.net
>>986
x、yは実数です
1030:132人目の素数さん
20/12/22 21:01:41.00 pZsmJqMD.net
>>986
a,bがともに負なら最小値じゃなくて最大値になるからじゃないの?
1031:132人目の素数さん
20/12/22 21:13:15.42 tfE2Xo7E.net
>>988
あっ!そうですね
つまらないことで悩んでました
ありがとうございます
1032:132人目の素数さん
20/12/22 21:13:48.74 pZsmJqMD.net
>>978
これも同じ
θ=25°として
AD=a=1/sin(θ)
AB=cos(θ)/sin(θ)
AC=cos(θ)/(sin(θ)*sin(2*θ))
倍角公式から
=cos(θ)/(sin(θ)*2*sin(θ)*cos(θ))
=(1/2)*(1/sin(θ)^2)
= (1/2)*a^2
1033:132人目の素数さん
20/12/23 02:53:27.38 +sWSxnPx.net
>>984
3sin(25) - 4sin(25)^3 = sin(3x25) = sin(30+45)
= sin(30)cos(45) + cos(30)sin(45) = (√2 + √6)/4,
3/a - 4/a^3 = (√2 + √6)/4,
12a^2 = {(√2 + √6)a^3 + 16},
1034:132人目の素数さん
20/12/23 03:20:06.92 +sWSxnPx.net
3 - 4/a^2 = (√2 + √6)/4・a,
より
a = (√6 - √2)(3 - 4/a^2),
答えを (1/2)(√6 - √2)(3a - 4/a) と表わすこともできるな。
それはそうと、次スレ・・・・
1035:132人目の素数さん
20/12/23 08:15:13.79 1yGKdygC.net
>>978
イナさんは進振りの得点はいくらでした?
1036:132人目の素数さん
20/12/23 09:21:43.86 ljWpk2JW.net
高校数学の質問スレPart409
スレリンク(math板)
1037:132人目の素数さん
20/12/25 04:54:46.36 6WONeLIr.net
t=AC とおくと
{1 + (√3)/2}t^3 - (3t - 2)^2 = 0,
1038:132人目の素数さん
20/12/27 20:47:00.00 wSKs1+ph.net
超数弱の高1です。なぜ確率を求める際には「同様に確からしい」ことが前提にならなきゃいけないのですか?
1039:132人目の素数さん
20/12/27 20:58:06.91 oDrdBdZ5.net
別に同様にでなくてもいいよ
1だけ他の目よりも2倍でやすいサイコロとか設定してもいい
1040:132人目の素数さん
20/12/27 22:10:50.89 0E0H3F4m.net
六面サイコロで七が出る可能性は無いし
1041:132人目の素数さん
20/12/27 22:54:49.82 CMg6qlZs.net
7の目のある六面サイコロを設定しても構わんよ
1042:132人目の素数さん
20/12/27 23:00:25.63 CMg6qlZs.net
1000の目のある妖怪を設定しても良い
1043:1001
Over 1000 Thread.net
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 75日 0時間 3分 43秒
1044:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています