20/10/21 10:05:15.62 Cobd5QkN.net
前>>66
>>54
一辺2の立方体の切り口ACFは正三角形で、
その一辺の長さは一辺2の正方形の斜辺だから2√2
面積は一辺1の正三角形の(2√2)^2倍になる。
△ACF=(√3/4)(2√2)^2=2√3
頂点A,C,Fはいずれも一辺2の立方体の中心から√3の距離にある。
△ACFを底面とし、一辺2の立方体の中心を頂点とする正三角錐の体積は、
高さをhとして(1/3)(2√3)h=(√3)(√3)(1/2)(√3)(1/3)=√3/2
h=(√3/2)/(2√3/3)=3/4
球の半径√2と切り口の一辺2の立方体の中心からの距離h=3/4についてピタゴラスの定理より、
円の半径=√(√2)^2-(3/4)^2=√(4-9/16)=√55/4