高校数学の質問スレPart408at MATH
高校数学の質問スレPart408 - 暇つぶし2ch344:132人目の素数さん
20/11/06 13:07:48.19 DLKrvzXt.net
問題
α= cos(π/3)+isin(π/3)とする
(1-α)(1-α^2)(1-α^3)(1-α^4)(1-α^5)=6を証明せよ
解答
αは1の6乗根の1つであり
1,α,α^2,α^3,α^4,α^5が(z^6)-1=0の解となる
よって(z^6)-1=(z-1)(z-α)(z-α^2)(z-α^3)(z-α^4)(z-α^5)…②
とおける
一方,(z^6)-1=(z-1)(z^5+z^4+z^3+z^2+z+1)…③
である.ここで②,③より
(z-1)(z-α)(z-α^2)(z-α^3)(z-α^4)(z-α^5)
=(z-1)(z^5+z^4+z^3+z^2+z+1)
であるから
(z-α)(z-α^2)(z-α^3)(z-α^4)(z-α^5)
=z^5+z^4+z^3+z^2+z+1
となる.これはzについての恒等式であるから,
z=1を両辺に代入すると
(1-α)(1-α^2)(1-α^3)(1-α^4)(1-α^5)=6が成り立つ
質問
②について
(z^6)-1=0
⇔(z-1)(z-α)(z-α^2)(z-α^3)(z-α^4)(z-α^5)=0ならば分かるのですが
(z^6)-1=(z-1)(z-α)(z-α^2)(z-α^3)(z-α^4)(z-α^5)がなぜ成り立つか分かりません
初歩的な質問かもしれませんがお願いします


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch