20/11/05 16:44:25.32 oCSwH2P1.net
上記の
Q(n,k) = Σ[j=1,6-k] (-1)^{6-k-j}・Binomial(6-k,j)・P(n-k,6-k-j)・j^{n-6+j},
を具体的に書けば
Q(n,5) = 1^{n-5} = 1,
Q(n,4) = 2^{n-4} - 2(n-4),
Q(n,3) = 3^{n-3} - 3(n-3)・2^{n-4} + 3(n-3)(n-4),
Q(n,2) = 4^{n-2} - 4(n-2)・3^{n-3} + 6(n-2)(n-3)・2^{n-4} - 4(n-2)(n-3)(n-4),
Q(n,1) = 5^{n-1} - 5(n-1)・4^{n-2} + 10(n-1)(n-2)・3^{n-3} - 10(n-1)(n-2)(n-3)・2^{n-4} + 5(n-1)(n-2)(n-3)(n-4),
Q(n,0) = 6^n - 6n・5^{n-1} + 15n(n-1)・4^{n-2} - 20n(n-1)(n-2)・3^{n-3} + 15n(n-1)(n-2)(n-3)・2^{n-4} - 6n(n-1)(n-2)(n-3)(n-4),