20/12/11 19:24:18.75 OZ+9CBOV.net
(修正3)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいて5^3+6^3=(5+?)^3…(1)とする。
(1)をr^(2){(6/r)^2}=an{5^(2)+…+r^(1)5}(1/a)…(2)と変形する。
(2)はa=1、r^(2)=3のとき、5^n+6^n=(5+3^{1/(2)})^3…(3)となる。
(2)はa=1以外、r^(2)=2aのとき、5^n+6^n=(5+(2a)^{1/(2)})^3…(4)となる。
(3)は6を有理数とすると、5は無理数となるので、5,6,5+?は整数比とならない。
(4)の5,6,5+?は、(3)の5,6,5+?のa^{1/(2)}倍となるので、整数比とならない。
∴n≧3のとき、5^3+6^3=(5+?)^3は自然数解を持たない。
日高のこれ置いときますね。
日高には内緒ね。ここで証明します。
他は簡単すぎて解くに値しない。