20/10/04 08:16:58.31 f31A/48O.net
小澤徹 テンソル空間 メモ(これ結構良いね)
URLリンク(www.ozawa.phys.waseda.ac.jp)
小澤徹 (おざわ とおる)
III. 教育活動
4.数学小ネタ集 URLリンク(www.ozawa.phys.waseda.ac.jp)
URLリンク(www.ozawa.phys.waseda.ac.jp)
テンソル空間
平成 26 年 11 月
小澤 徹
P7
3.テンソル積の同型の構成
定理4 X とY をベクトル空間とする。夫々の基底を(ei; i ∈ I)及び(fj; j ∈ J)とし、添字集
合I とJ の直積集合I×J の生成するベクトル空間をF0(I×J)とする。各(x, y) ∈ X ×Y に対
し{i ∈ I; e*i(x) ≠ 0}及び{j ∈ J; f*j(y) ≠ 0}は有限であり、
一次結合Σ(i,j)∈I×J e*i(x)f*j(y)ι(x,y)
は F0(I × J) の元となる。付随する写像
B : X × Y ∋ (x, y) → B(x, y) =Σ(i,j)∈I×J e*i(x)f*j(y)ι(i,j) ∈ F0(I × J)
は双線型となる。
定理 2 に拠って B = T ◯ ρ なる T ∈ L(X ◯x Y ; F0(I × J)) が一意的に存在
する。このとき T は全単射とな�