20/10/01 19:13:10.72 YkS1knOQ.net
>>780
>ここの・・・ディープラーニング 、”3 階のテンソル”は
>代数学の抽象テンソルとは、無関係。
>むしろ、単なる直積集合(デカルト積)と思うべし
引用された記事書いた人が、この文章見たら、確実に泣くな
V×Wだったら、2種類の添字要らない
Vの基底がe1~enで、Wの基底がε1~εmだったら
V×Wを線型空間とみなした場合の基底は
e1~enおよびε1~εmのn+m個だろ?
(v,w)∈V×W なんだからさ
ほんとマジで全然わかってないな
じゃ、聞くけど
e1⊗ε1=(e1,ε1)∈V×W
e2⊗ε2=(e2,ε2)∈V×W
として
e1⊗ε1+e2⊗ε2=(v,w)
となるようなvとwって何?
>>778で
V⊗W⊂V×W
と言い切ったんだから
e1⊗ε1+e2⊗ε2=(v,w)
となるようなvとwを
具体的に書き表し切ってみせられるよね
さあ、やって!今!ここで!
ほんと、いつまでたっても
自分が微積分も線形代数も基礎から誤解してる
トンデモだという自覚がないんだねぇ(呆)
908:132人目の素数さん
20/10/01 19:18:00.12 YkS1knOQ.net
>>782
>分からない人には分からない
>分かる人には分かる
◆yH25M02vWFhPには分からない
数学者卒業者には皆分かる
◆yH25M02vWFhPが >>778
>V×Wの次元も、dimV×dimWだよ
と言い切った瞬間
「数学のスの字も分からん正真正銘のidiot」
であることが、数学科出身者にとって明らかとなった
909:132人目の素数さん
20/10/01 19:25:50.02 YkS1knOQ.net
>>780 >>784
>…氏は、>>778のV×Wに属する話だよ。”商”には落とさない
あまりに馬鹿な誤解なので、著者が気の毒すぎて、名前が書けない
だいたい、「商」ってなんだ? 意味が分らん
(v,w)∈V×Wなので、Vがn次元で、Wがm次元なら、V×Wはn+m次元
C^nは、CをR^2と見たとき、R^(2*n)であって、R^(2^n)ではないだろw
ほんと、どこまで底抜けのidiotなんだろうな こいつは
910:132人目の素数さん
20/10/01 19:34:32.03 YkS1knOQ.net
>>785
>直積集合
>集合のデカルト積(デカルト-せき、英: Cartesian product)
>または直積(ちょくせき、英: direct product)、直積集合、
>または単に積(せき、英: product)、積集合は、
>集合の集まり(集合族)に対して
>各集合から一つずつ元をとりだして組にしたもの(元の族)
>を元として持つ新たな集合である。
>具体的に二つの集合 A, B に対し、
>それらの直積とはそれらの任意の元
>a ∈ A, b ∈ B の順序対 (a, b)
>全てからなる集合をいう。
だろ?
で、
「任意のt∈V⊗Wについて、
t=v⊗w=(v,w)∈V×Wとなる
v∈V,w∈Wが必ず存在する」
というなら、tから(v、w)への関数を
具体的に示してみせて
ここまで言われて自分の誤りに気づけないなら
◆yH25M02vWFhP 君は正真正銘のidiotだよ
911:132人目の素数さん
20/10/01 19:52:48.79 YkS1knOQ.net
線型空間V,Wについて、直積集合V×Wに、
(v1,w1)+(v2,w2)=(v1+v2,w1+w2)
a(v,w)=(av,aw)
のように成分ごと演算を定義して
線型空間の構造を入れたものを
VとWの「直和」といいV⊕Wで表す
加群の直和
URLリンク(ja.wikipedia.org)
これは、双線型写像の考え方とは明らかに異なるんだよね
φ(v1+v2、w)=φ(v1、w)+φ(v2,w)
φ(v、w1+w2)=φ(v,w1)+φ(v,w2)
φ(av,w)=φ(v,aw)=aφ(v,w)
ほんと、線形代数が根本から全然分かってないんだねぇ、◆yH25M02vWFhPは
912:132人目の素数さん
20/10/01 20:21:46.55 YkS1knOQ.net
>>788
>みんな、”ドン引き”してしまっているんだよね
「V×Wの次元も、dimV×dimWだよ」って、
数学科出身者全員、”ドン引き”どころか”超弩級失笑”
wwwwwwwwwwwwwwwwwwwwwwww
913:132人目の素数さん
20/10/01 20:29:21.00 YkS1knOQ.net
今日のまとめ
1.V×Wに線型空間の構造を入れたものは、直和V⊕W
2.V×WからVとWのテンソル積V⊗Wへの写像は双線型写像であって、
線型写像ではない つまりV×WはV⊗Wの線型部分空間ではない
914:現代数学の系譜 雑談
20/10/01 21:09:04.57 puwLBl/N.net
>>793
>>あんた、勘違いしているよ
>>後者V×Wの次元も、dimV×dimWだよ
>V × W の変数の値はdimV+dimW個しかない
あーらら、頑張るねw
だが、あんたの負けだな
下記の田丸先生読んでみな(^^
「定義 1.3 U0 を実線型空間, ι : V × W → U0 を双線型写像とする. 」
「命題 1.7 {v1, . . . , vn} を V の基底, {w1, . . . , wm} を W の基底とする.
また, U0 :=R^mn とおき, ι : V × W → U0 を双線型写像とする.
このとき, もし {ι(vi, wj )} が U0 の基底ならば, (U0, ι) は V と W のテンソル積である.」
だよ
つまり、V × Wは、R^mn つまり、mとnの積の次元なのですよ(^^;
(参考 >>716より)
URLリンク(www.math.sci.hiroshima-u.ac.jp)
数学概論 (2014年度前期) 講義資料 数学専攻 M1 対象, 輪講科目. 田丸 広島大(今は大阪市大)
(抜粋)
P2
定義 1.3 U0 を実線型空間, ι : V × W → U0 を双線型写像とする. このとき (U0, ι) が
V と W の テンソル積 であるとは, 次が成り立つこと:
1.1.2 基底を用いた構成
ここでは, テンソル積を基底を用いて構成する.
命題 1.7 {v1, . . . , vn} を V の基底, {w1, . . . , wm} を W の基底とする.
また, U0 :=R^mn とおき, ι : V × W → U0 を双線型写像とする.
このとき, もし {ι(vi, wj )} が U0 の基底ならば, (U0, ι) は V と W のテンソル積である.
この命題の仮定をみたす ι が存在することは容易に分かるので, テンソル積が存在する
ことが従う.
系 1.8 dim(V ◯x W) = dim V ・ dim W. とくに {v1, . . . , vn}, {w1, . . . , wm} をそれぞれ
V , W の基底とすると, {vi ◯x wj} は V ◯x W の基底である.
これでテンソル積の次元が分かった. 次は, 次元を用いた判定条件.
(引用終り)
以上
915:現代数学の系譜 雑談
20/10/01 21:21:58.86 puwLBl/N.net
>>796
>>…氏は、>>778のV×Wに属する話だよ。”商”には落とさない
>だいたい、「商」ってなんだ? 意味が分らん
何が分からないのかな?
下記のwikipediaの通りだよ
テンソル積、商としての定義より
体 K 上のベクトル空間 V, W
デカルト積 V × W の生成する K-上の自由線型空間 F(V × W)
「・・同値関係 ~ による商として定義することができる」とあるよ(下記)
デカルト積 V × Wにおいて、Vがm次元、Wがn次元として、m+n次元にしかならないとしたら
デカルト積 V × Wの商から、テンソル積 U = V ◯x W での、積のmn次元が出るわけないでしょ
デカルト積 V × Wが、積のmn次元だから、テンソル積 U = V ◯x W での、積のmn次元が出るんだよw(^^;
(参考 >>778より)
URLリンク(ja.wikipedia.org)
テンソル積
(抜粋)
定義
商としての定義
一般に、体 K 上のベクトル空間 V, W が与えられたとき、それらのテンソル積 U = V ◯x W は、デカルト積 V × W の生成する K-上の自由線型空間 F(V × W) の、
(v_1,w)+(v_2,w)~ (v_1+v_2,w)
&(v_1,w) + (v_2,w) ~ (v_1 + v_2,w) (v, v_1, v_2 ∈ V; w, w_1, w_2 ∈ W; c ∈ K)
&c(v,w) ~ (cv,w) ~ (v,cw)
で与えられる同値関係 ~ による商として定義することができる。
これは F(V × W) における演算から誘導される演算によりベクトル空間を成す。
(引用終り)
以上
916:132人目の素数さん
20/10/01 22:00:50.31 YkS1knOQ.net
>>801
>あーらら、頑張るね
あーらら、頑張るね idiot
でも頑張れば頑張るほど間違い続けて馬鹿にされるよ idiot
>U0 :=R^mn とおき, ι :V × W → U0 を双線型写像とする
ιは双線型写像であって線型写像ではないのは分かってるかな?
つまりι(V × W )は線形空間ではない
>もし {ι(vi, wj )} が U0 の基底ならば,
>(U0, ι) は V と W のテンソル積である
もし{ι(vi, wj )} が U0 の基底であっても
{ι(vi, wj )} が ι(V × W )の全ての元を生成できるわけではない
このことが分からないキミは・・・idiot !
>つまり、V × Wは、R^mn つまり、mとnの積の次元なのですよ
超特大トンデモ発言 キタ―(゚∀゚)―!!
V × Wは、R^(m+n) つまり、mとnの和の次元なのだよ
大学に合格できなかった高卒idiot君
917:132人目の素数さん
20/10/01 22:12:33.55 YkS1knOQ.net
>>802
>下記のwikipediaの通りだよ
同値関係も同値類もまったく理解できない
idiotのキミには到底理解できないから諦めな
918:132人目の素数さん
20/10/01 22:19:45.24 YkS1knOQ.net
そもそも、idiotの君には「自由線型空間」の
「自由」の意味が全く理解できないだろう
自由加群
URLリンク(ja.wikipedia.org)
「集合 E が与えられたとき、E 上の自由加群とは E を基底 にもつ自由加群である。」
つまり
「デカルト積 V × W の生成する K-上の自由線型空間 F(V × W)」
(正しくはV×W上の自由K-線型空間F(V×W))
とは、V×Wの任意の元を基底に持つK-線型空間
919:132人目の素数さん
20/10/01 22:26:02.10 YkS1knOQ.net
F(V × W)においては
(v_1,w) (v_2,w) (v_1+v_2,w)
はそれぞれ独立である
つまり
920:F(V × W)の基底は無限にある
921:現代数学の系譜 雑談
20/10/02 00:02:46.13 4l+W3Pp2.net
>>805-806
(引用開始)
「自由」の意味が全く理解できないだろう
自由加群
URLリンク(ja.wikipedia.org)
「集合 E が与えられたとき、E 上の自由加群とは E を基底 にもつ自由加群である。」
F(V × W)においては
(v_1,w) (v_2,w) (v_1+v_2,w)
はそれぞれ独立である
つまりF(V × W)の基底は無限にある
(引用終り)
いやいや、おサルの妄想は、面白ね~
統合失調症の妄想って、こんなに面白いことになるのかね?
「つまりF(V × W)の基底は無限にある」って、あらま、突然「基底は無限」になる?w(^^;
V × W って、あなた、「V × Wは、R^(m+n) つまり、mとnの和の次元なのだよ」(>>803)と言った尻から、突然「基底は無限」かよ、おいw(^^
自由加群って、定義としては、下記自由加群wikipedia”R-加群 M が基底をもつとき、M は自由加群であるという[2]。”
ってこと。この話は、過去スレでも議論した
「自由」の意味は、自由加群wikipedia”一般化”のところに図があるから、その周辺を読んでみなよ
それで分かるだろう
で、R-加群は、必ずしも基底を持たないって話だったでしょ
基底を持つ場合を、特に定義したわけですよ、大事だからね
それから、下記 テンソル積 wikipedia「商としての定義
一般に、体 K 上のベクトル空間 V, W が与えられたとき、それらのテンソル積 U = V ◯x W は、デカルト積 V × W の生成する K-上の自由線型空間 F(V × W) 」
は、下記の 自由加群wikipedia「構成
集合 E が与えられたとき、E 上の自由 R-加群を作ることができる」で
集合 E= V × W(デカルト積)として、構成される 自由 R-加群として、
単純」に記号F(V × W)を使って”K-上の自由線型空間 F(V × W)”を定義するってことじゃね? それ以上でも以下でもない(^^
つづく
922:現代数学の系譜 雑談
20/10/02 00:03:14.52 4l+W3Pp2.net
>>807
つづき
(参考)
URLリンク(ja.wikipedia.org)
自由加群
(抜粋)
定義
R-加群 M について、集合 E ⊂ M が M の基底であるとは、次の2条件を満たすことである。
1.E は M を生成する。すなわち、M の任意の元は E の元に R の係数をかけたものの有限和である。
2.E は一次独立である。すなわち、任意の E の互いに異なる有限個の元 e_1,e_2,・・・ ,e_n に対して r_1e_1+r_2e_2+・・・ +r_ne_n=0_M であれば、 r_1=r_2=・・・ =r_n=0_R となる。
(ただし 0M は M の零元で、0R は R の零元である。)
R-加群 M が基底をもつとき、M は自由加群であるという[2]。
基底の濃度を自由加群 M のランク(階数)と言い、濃度が有限ならば、M をランク n の自由加群、あるいは単に有限ランクの自由加群と言う。
構成
集合 E が与えられたとき、E 上の自由 R-加群を作ることができる。それは単純に R の|E| 個のコピーの直和であり、しばしば R(E) と表記される。この直和を C(E) と表記し、具体的に構成しよう。
一般化
より弱い一般化として平坦加群やねじれのない加群がある。平坦加群はテンソル積が完全列を保つという性質をもつ。環が特別な性質をもてば、逆が成り立つことがある。例えば、任意の完全局所デデキント環上のすべてのねじれのない加群は平坦加群、射影加群、自由加群でもある。
URLリンク(upload.wikimedia.org)
(参考 >>778より)
URLリンク(ja.wikipedia.org)
テンソル積
(抜粋)
定義
商としての定義
一般に、体 K 上のベクトル空間 V, W が与えられたとき、それらのテンソル積 U = V ◯x W は、デカルト積 V × W の生成する K-上の自由線型空間 F(V × W)
(引用終り)
以上
923:現代数学の系譜 雑談
20/10/02 00:05:36.12 4l+W3Pp2.net
>>807 タイポ訂正
単純」に記号F(V × W)を使って”K-上の自由線型空間 F(V × W)”を定義するってことじゃね? それ以上でも以下でもない(^^
↓
単純に記号F(V × W)を使って”K-上の自由線型空間 F(V × W)”を定義するってことじゃね? それ以上でも以下でもない(^^
”」”を抜く
分かると思うが(^^;
924:132人目の素数さん
20/10/02 02:46:17.34 joDAzeh/.net
>>807
>「つまりF(V × W)の基底は無限にある」って、あらま、突然「基底は無限」になる?w(^^;
>V × W って、あなた、「V × Wは、R^(m+n) つまり、mとnの和の次元なのだよ」(>>803)と言った尻から、突然「基底は無限」かよ、おいw(^^
一行目はF(V × W)、2行目はV × Wなんだけど、なに発狂してるんですか?
925:132人目の素数さん
20/10/02 02:50:54.29 7SeDt20X.net
ガロアを無視しちゃなんねぇ。
舘野 鴻:「がろあむし」偕成社 (2020/Sep)
40p.2200円
URLリンク(www.kaiseisha.co.jp)
実在の虫の一生 淡々と
日経夕刊 10/1 (竹内 薫が選ぶ3冊)
926:現代数学の系譜 雑談
20/10/02 06:40:50.69 4l+W3Pp2.net
>>807 訂正
集合 E= V × W(デカルト積)として、構成される 自由 R-加群として、
↓
集合 E= V × W(デカルト積)の基底 として、構成される 自由 R-加群として、
だな
E= V × W(デカルト積)ではないですね
補足
1.V × W(デカルト積)で、>>801の田丸先生より
{v1, . . . , vn} を V の基底, {w1, . . . , wm} を W の基底とする.
2.デカルト積の定義(下記)より、基底のペア (vi, wj)∈V × W となる
3.この基底のペア(vi, wj)は、mn個存在する
4.この基底のペア(vi, wj)で、ベクトル空間を考えると、V × W(デカルト積)はmn次元のベクトル空間になる
5.テンソル積の空間は、V × W(デカルト積)全体ではなく、下記直積 (ベクトル)wikipediaの 二つのベクトル v∈V、w∈ のテンソル積 v ◯x w から成るものに制限される
(下記「典型的には二つのベクトルのテンソル積を言う。座標ベクトル(英語版)の外積をとった結果は行列になる。」ってことね。(mn行列全体ではなく、直積 (ベクトル)の形に制限される。詳しくは、直積 (ベクトル)wikipediaをご参照))
(参考)
URLリンク(ja.wikipedia.org)
集合のデカルト積(デカルト-せき、英: Cartesian product)または直積(ちょくせき、英: direct product)、直積集合、または単に積(せき、英: product)、積集合は、集合の集まり(集合族)に対して各集合から一つずつ元をとりだして組にしたもの(元の族)を元として持つ新たな集合である。
具体的に二つの集合 A, B に対し、それらの直積とはそれらの任意の元 a ∈ A, b ∈ B の順序対 (a, b) 全てからなる集合をいう[1]。
URLリンク(ja.wikipedia.org)(%E3%83%99%E3%82%AF%E3%83%88%E3%83%AB)
直積 (ベクトル)
線型代数学における直積(direct product[1])あるいは外積(outer product)は典型的には二つのベクトルのテンソル積を言う。座標ベクトル(英語版)の外積をとった結果は行列になる。
(引用終り)
以上
927:現代数学の系譜 雑談
20/10/02 07:01:21.72 4l+W3Pp2.net
>>812 補足
ここらは、
手元に、雪江明彦 代数学2があるけど、P127 ”2.10 テンソル積”を併読すると、よく分かると思う
雪江明彦では、テンソル積の普遍性を使って、テンソル積を定義している
よく言われるが、数学では”ある数学の対象Aが、ある性質を持つ”ということが分かると
逆に、”ある性質を持つ 数学的対象A’ ”という形で、対象Aを抽象的に定義することがよくあるという
”テンソル積の普遍性を使って、テンソル積を定義している”というのも
その典型例かもね(^^
928:現代数学の系譜 雑談
20/10/02 11:02:11.23 lW4e9AjH.net
やれやれ
「V × Wは、R^(m+n) つまり、mとnの和の次元なのだよ 」(>>803)
「自由加群 デカルト積 V × W の生成する K-上の自由線型空間 F(V × W) とは、V×Wの任意の元を基底に持つK-線型空間 つまりF(V × W)の基底は無限にある」(>>805-806)
この二つの発言もひどいな(>>812-813)
下記もひどいけどな~(^^;
「行列式はテンソルです」(>>576)
「内積も、行列式同様、テンソルです」(>>593)
って、みんな、”ドン引き”してしまっているんだよね(^^
おいおい
”・内積や行列式がテンソルであることが理解できない
・機械工学やらオペレーションズリサーチやらのテンソルが
数学におけるテンソルの定義を満たしてることも理解できない
こういう人を、我々、数学科で学んだ”神”はこう呼ぶ
idiot”(>>640)って、なに言ってんだろうね?
てめえ、ベクトル空間のデカルト積 V × W の次元さえ理解できていないのに
「数学科で学んだ”神”」を自称するかね~?w(^^
”オペレーションズリサーチ”の理解もあやしいな
普通は、”オペレーションズリサーチ”には、テンソルは出てこないよ(テンソルを使ってはいけないことはないけども)
いまどきのAIとかビッグデータと、昔からの”オペレーションズリサーチ”とを混同しているようだな(^^;
(参考)
URLリンク(ja.wikipedia.org)
オペレーションズ・リサーチ
(引用終り)
以上
929:132人目の素数さん
20/10/02 19:17:30.66 GDNIEcV7.net
>>807
>「つまりF(V × W)の基底は無限にある」って、あらま、突然「基底は無限」になる?
(中略)
>集合 E= V × W(デカルト積)として、構成される 自由 R-加群として、
>単純に記号F(V × W)を使って”K-上の自由線型空間 F(V × W)”を定義する
>ってことじゃね?
いちいち?で疑問形で終わるって、キミ自分に全然自信ないの?
さすが大学に受からなかった高卒だな
大卒で数学理解してれば、?じゃなく!で言い切れる
言い切れないキミは、数学界の落伍者!
>>808
>R-加群 M について、集合 E ⊂ M が M の基底であるとは、次の2条件を満たすことである。
>1.E は M を生成する。すなわち、M の任意の元は E の元に R の係数をかけたものの有限和である。
>2.E は一次独立である。すなわち、任意の E の互いに異なる有限個の元 e_1,e_2,・・・ ,e_n に対して
>r_1e_1+r_2e_2+・・・ +r_ne_n=0_M であれば、 r_1=r_2=・・・ =r_n=0_R となる。
>(ただし 0M は M の零元で、0R は R の零元である。)
で、E=V×Wとしたとき、V×Wって有限集合かい?違うだろ?
じゃ、基底は無限にある!
無限にあることも分からず、無限にある?と疑うキミは完全なidiot!!!
930:132人目の素数さん
20/10/02 19:43:47.67 GDNIEcV7.net
>>812
>集合 E= V × W(デカルト積)として、構成される 自由 R-加群として、
> ↓
>集合 E= V × W(デカルト積)の基底 として、構成される 自由 R-加群として、
>だな
>E= V × W(デカルト積)ではないですね
はい、キミは日本語も読めないidiot 確定!!!
E= V × W(デカルト積)
「集合 E= V × W(デカルト積)として、構成される 自由 R-加群として、」
のみが正しい文章
そもそも V×W というだけでは線型空間にならない
V×Wにたいして
(v1,w1)+(v2,w2)=(v1+v2,w1+w2)
とかいう演算を入れるなら
線型空間の直和V⊕Wとなる、
その次元は dim V + dim W
931:132人目の素数さん
20/10/02 19:44:14.30 GDNIEcV7.net
>>812
>1.V × W(デカルト積)で、
> {v1, . . . , vn} を V の基底, {w1, . . . , wm} を W の基底とする.
結構
>2.デカルト積の定義(下記)より、基底のペア (vi, wj)∈V × W となる
然り
>3.この基底のペア(vi, wj)は、mn個存在する
然り
>4.この基底のペア(vi, wj)で、ベクトル空間を考えると、V × W(デカルト積)はmn次元のベクトル空間になる
否!キミはそこで間違った!気違った!発狂した!トンデモになった!
まず 基底のペア(vi, wj)を「新たな基底」として「(VでもWでもない)新たなベクトル空間」を考えるのはいい
し・か・し、その「新たなベクトル空間」は V × W(デカルト積)ではない!V⊗W (テンソル積)である
なぜ、そう言い切れるか?それは例えば
(v1,w1)+(v2、w2)
932:は、双線型性を保持する+の定義では (v,w)として表せず、したがってV × Wの要素ではないからだ ウソだというなら、(v1,w1)+(v2、w2)=(v、w)となるv,wを、 v1,v2,w1,w2を使ってあらわしてくれ キミがどんな式を書いてもその誤りを即座に指摘して キミを焼き🐓にしてみせようw >5.テンソル積の空間は、V × W(デカルト積)全体ではなく、 >二つのベクトル v∈V、w∈W のテンソル積 v ◯x w から成るものに制限される 逆だ!キミは日本語も正しく読めないidiotだな 二つのベクトル v∈V、w∈W のテンソル積 v⊗w からなる集合こそ V × W(デカルト積)からV⊗Wへの双線型写像の像 そしてそれは、集合Vと集合Wのテンソル積 V⊗W の真部分集合 つまりt∈V⊗Wのほとんど全てはv⊗wとは表せない (v1⊗w1+v2⊗w2 のような形には表せるが、v⊗wにはできない)
933:132人目の素数さん
20/10/02 19:57:21.04 GDNIEcV7.net
>>813
キミは、普遍性が全然わかってない
普遍性とは
V×W→U が双線型写像なら
V×W→V⊗W によって、一意的に
V⊗W→U という線型写像が構成できる
ということ
その際用いられる、双線型写像
V×W→V⊗W は
1.全射ではない!
2.単射でもない!
1は
「ベクトル同士のテンソル積で実現できる行列の行列式は0だが
行列の中には行列式が0でない者が存在する」
ことで示せる
2は
「ベクトルv⊗wは、スカラーが体を成す場合
0でない任意のスカラーaについて
av⊗(1/a)w 及び (1/a)v⊗aw と等しい」
ことで示せる
934:現代数学の系譜 雑談
20/10/02 20:49:28.19 4l+W3Pp2.net
>>815-818
おサル頑張るね~w(^^;
だが、その屁理屈のクソ粘りをやればやるほど、お前さんの数学の才能の無さ、理解の無さ、結果としての数学科のオチコボレってことが、ハッキリするだけだよ
まあ、適当に遊んでやるぜよ(^^
勝負は、とっくについている
こちらの勝ちってねww(^^;
(>>815より)
>>集合 E= V × W(デカルト積)として、構成される 自由 R-加群として、
>>単純に記号F(V × W)を使って”K-上の自由線型空間 F(V × W)”を定義する
>>ってことじゃね?
>いちいち?で疑問形で終わるって、キミ自分に全然自信ないの?
>さすが大学に受からなかった高卒だな
疑問形で終わるのは、おれはwikipediaの記述を100%していないからだよ
wikipediaの記述が間違っていることも、結構あるからね
(>>817より)
>> 4.この基底のペア(vi, wj)で、ベクトル空間を考えると、V × W(デカルト積)はmn次元のベクトル空間になる
>否!キミはそこで間違った!気違った!発狂した!トンデモになった!
>まず 基底のペア(vi, wj)を「新たな基底」として「(VでもWでもない)新たなベクトル空間」を考えるのはいい
>し・か・し、その「新たなベクトル空間」は V × W(デカルト積)ではない!V⊗W (テンソル積)である
違うだろ? 田丸先生のは、下記の冒頭 「話を簡単にするために, 有限次元の実線型空間のみを扱う.」とあるよ
つまり、係数(スカラー)が実数(体)だから、ベクトル空間だよ(下記 環上の加群 wikipediaご参照)
この議論は、過去のスレで行列の零因子との関係でやったでしょ。忘れたらしいなw(^^;
つづく
935:現代数学の系譜 雑談
20/10/02 20:50:08.36 4l+W3Pp2.net
>>819
つづき
(参考 >>716より)
URLリンク(www.math.sci.hiroshima-u.ac.jp)
数学概論 (2014年度前期) 講義資料 数学専攻 M1 対象, 輪講科目. 田丸 広島大(今は大阪市大)
URLリンク(ja.wikipedia.org)
環上の加群
(抜粋)
環上の加群(かぐん、英: module)とは、ベクトル空間を一般化した概念で、係数(スカラー)を体の元とする代わりに、より一般の環の元としたものである。
ベクトル空間においては、スカラーの全体は体を成し、ベクトルに対して分配律などの特定の条件を満足するスカラー乗法によって作用している。
例
・K が体ならば、「K-線型空間」(K 上のベクトル空間)の概念と K-加群の概念は一致する。
(引用終り)
以上
936:132人目の素数さん
20/10/02 21:07:15.47 GDNIEcV7.net
>>819
🐓こそ諦めが悪い
ま、キミがいくらもっともらしい口を叩いても
数学の才能の無さ、理解の無さ、
大学にも受からん正真正銘のオチコボレという現実が
ハッキリクッキリ露見するってもんだ
🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥
さて、今日も哺乳類にすらなれない🐓をオチョクルとするか
🐓相手に連戦連勝ってのも、腐れアジアの出っ歯メガネ野郎こと
弱小日本軍を焼き尽くす米軍みたいで実に大人気ないけどな
>疑問形で終わるのは、おれはwikipediaの記述を100%「理解」していないからだよ
そりゃそうだろ Fラン大学すら受からん正真正銘のidiotだからな
>wikipediaの記述が間違っていることも、結構あるからね
🐓のいうことは、100%間違ってるがね
いまだかつて正しかったためしがない
貴様ほど知的レベルの低いidiotは見たことないね
>>まず 基底のペア(vi, wj)を「新たな基底」として
>>「(VでもWでもない)新たなベクトル空間」を考えるのはいい
>>し・か・し、その「新たなベクトル空間」は
>>V × W(デカルト積)ではない!V⊗W (テンソル積)である
>違うだろ?
ち・が・わ・ん・よ!
>**先生のは、 「話を簡単にするために, 有限次元の実線型空間のみを扱う.」とあるよ
>つまり、係数(スカラー)が実数(体)だから、ベクトル空間だよ
V×Wは無限集合だから、有限次元にならんよ
無限集合を有限集合だといいはる🐓はidiot!
>この議論は、過去のスレで行列の零因子との関係でやったでしょ。忘れたらしいなw
🐓は自分の主張が論理に反することに気づけんらしいな
なるほど脳味噌がちょびっとしかないトリ頭のidiot
937:132人目の素数さん
20/10/02 21:11:05.97 GDNIEcV7.net
>>822
>V×Wは無限集合だから、有限次元にならんよ
idiotにも分かるようにいってやろう
V×Wは無限集合だから、V×Wの要素それぞれが基底となる線型空間は
決して有限次元にはなり得んよ
🐓は負けた
しかも別に俺が負かしたわけではない
勝手にオウンゴールで自爆したw
恨むなら自分の思考力の無さを恨めw
938:132人目の素数さん
20/10/02 21:19:23.12 GDNIEcV7.net
◆yH25M02vWFhP は自信満々で発した言葉が
悉く初歩的レベルで間違ってる
ここまで劣悪なidiotは珍しい
思考力がないのみならず、直感力すらない
数学?(ヾノ・∀・`)ムリムリ
939:現代数学の系譜 雑談
20/10/02 21:22:31.45 4l+W3Pp2.net
>>819
>この議論は、過去のスレで行列の零因子との関係でやったでしょ。忘れたらしいなw(^^;
過去スレで、戸松 玲治先生、行列単位 Eijの議論あったよね
で、行列単位 wikipedia 「体 K 係数の n × m 行列全体は K-ベクトル空間であり、nm 個の行列単位はその基底となる。」とある
忘れたらしいなw(^^;
純粋・応用数学(含むガロア理論)3
スレリンク(math板:428番)
428 自分返信:現代数学の系譜 雑談 ◆yH25M02vWFhP [] 投稿日:2020/08/19(水)
URLリンク(www.ma.noda.tus.ac.jp)
線形代数学 I 及び演習(演習) No.1 9 月 16 日配布 担当:戸松 玲治
(抜粋)
P1
(i, j) 成分のみ 1, 残りは 0 という行列を Eij と書く. これを行列単位という
問題 1 (1pt.) 行列単位をすべて集めたもの Eij^n i,j=1 は, ベクトル空間 Mn(K) の基底であることを示せ.
P2
問題 2 (2pt.) Mn(K) の行列単位 Eij^n i,j=1 に対して, 次が成り立つことを示せ:
EijEkl = δj,k Eil.
つまり二つの行列単位を掛けると,
真ん中の二つの文字が異なれば 0 になり,
同じであればそれが縮約された行列単位になる.
(引用終り)
URLリンク(ja.wikipedia.org)
行列単位
(抜粋)
線型代数学や、環と加群の理論において、行列単位(ぎょうれつたんい、英: matrix unit)とは、ただ 1 つの成分が 1 で残りの成分が全て 0 である行列のことである。(i, j) 成分が 1 の行列単位は Eij などと書かれる。
体 K 係数の n × m 行列全体は K-ベクトル空間であり、nm 個の行列単位はその基底となる。
行列 M = (mij) に対して、Eij?M?Ekl = mjk?E?il が成り立つ(ただし行列のサイズは積が定義されるようなものとする)。とくに、行列単位同士の積について、Eij?Ekl は j = k のとき Eil で、j ≠ k のとき 0 である:
E_ijE_kl=δ_jkE_il
ここで、δjk はクロネッカーのデルタである。
(引用終り)
以上
940:132人目の素数さん
20/10/02 21:26:37.80 GDNIEcV7.net
正規部分群の定義にある、gHg^(-1)=Hを、
「gHg^(-1)がHと同型」と読んだ時点で
なんだこいつ、と思ったが、その後
a∈b ⇔ a⊂b
とか発言するのを見て
「こいつ正真正銘のidiotだな」
と悟った
だから
「内積も行列式もテンソルたり得ない!」
「V×Wに線型空間の構造を入れれば次元はdim V × dim W」
とトンデモ発言を連発してもまったく�
941:チかない こいつは全く考える能力がなく、×はなんでもかんでも×だと 馬鹿まるだしの連想をする以外できない🐓アタマの持主 大阪にはこんな馬鹿しかいないのか
942:132人目の素数さん
20/10/02 21:30:01.63 GDNIEcV7.net
>>824
>「体 K 係数の n × m 行列全体は K-ベクトル空間であり、
> nm 個の行列単位はその基底となる。」
然り
し・か・し、任意のn×m行列が、
n次元ベクトルとm次元ベクトルの
テンソル積として表せるか?
というなら答えは、断じて否だw
テンソル積の和、とかではなく、
ただ一つのテンソル積 として表せないなら
V×Wの要素たり得ない
943:現代数学の系譜 雑談
20/10/02 23:32:19.78 4l+W3Pp2.net
>>824
ベクトル空間とテンソル積の関係が
理解できていない、数学科卒オチコボレ生よ、あわれ! w(^^;
URLリンク(ja.wikipedia.org)
ベクトル空間
(抜粋)
定義
「体 F 上のベクトル空間 V 」とは、後に述べるような、二種類の演算を備えた集合 V のことである。ベクトル空間 V の元はベクトル (英: vector ) と呼ばれる。体 F は係数体 (英: coefficient field, scalar field ) と呼ばれる。係数体 F の元はスカラー (英: scalar ) あるいは係数 (英: coefficient ) と呼ばれる。
テンソル積
詳細は「ベクトル空間のテンソル積」を参照
同じ体 F 上の二つのベクトル空間 V と W のテンソル積 (英: tensor product ) V ◯xF W あるいは単に V ◯x W は、線型写像を多変数にするような概念の拡張を扱う多重線型代数における中心的な概念のひとつである。写像 g : V × W → X が双線型写像であるとは、g が両変数 v, w の何れについても線型であることを言う。これはつまり、w を固定したとき写像 v → g(v, w) が線型であり、かつ v を固定した時も同様であることを意味する。
テンソル積は以下のような意味で、双線型写像を普遍的に受け入れる特別のベクトル空間である。それはテンソルと呼ばれる記号の(形式的な)有限和
v1 ◯x w1 + v2 ◯x w2 + ... + vn ◯x wn
の全体からなる線型空間で、これらの元は a をスカラーとして
a ・ (v ◯x w) = (a ・ v) ◯x w = v ◯x (a ・ w),
(v1 + v2) ◯x w = v1 ◯x w + v2 ◯x w,
v ◯x (w1 + w2) = v ◯x w1 + v ◯x w2
なる規則で縛られている[44]。
つづく
944:現代数学の系譜 雑談
20/10/02 23:32:53.36 4l+W3Pp2.net
>>827
つづき
これらの規則は、順序対 (v, w) を v ◯x w へ写す V × W から V ◯x W への写像 f が双線型となることを保証するものである。テンソル積の普遍性とは
任意のベクトル空間 X と任意の双線型写像 g : V × W → X が与えられたとき、写像 u : V ◯x W → X が一意的に存在して、上記の写像 f との合成 u ◯ f が
g : u(v ◯x w) = g(v, w) に等しくなるようにすることができる[45] というものである。
テンソル積の普遍性は対象を、その対象からの、あるいはその対象への写像によって間接的に定義するという(進んだ抽象代数学ではよく用いられる)手法の一例である。
URLリンク(ja.wikipedia.org)
テンソル積の普遍性を表す可換図式
(引用終り)
以上
945:132人目の素数さん
20/10/03 06:30:04.80 SmtMlBCP.net
>>827
>ベクトル空間とテンソル積の関係が理解できていない
それは、◆yH25M02vWFhP、君のほうだよ
>>828
>順序対 (v, w) を v ⊗ w へ写す
>V × W から V ⊗ W への写像 f が
>双線型となる
で、その写像fが
1.全射でない
2.単射でない
というのは理解できてるかな?キミ
>>818に書かれていることだが、
(全射でないことの証明)
・v1⊗w1+v2⊗w2は、V⊗Wの元である(V⊗Wが線型空間であるから)
・一方v1⊗w1+v2⊗w2が写像fの像であるためには
v⊗w=v1⊗w1+v2⊗w2となる、v∈Vおよびw⊗Wが
存在しなくてはならない(f(v,w)=v⊗wであるから)
・ところでV=Wとすると、例えばv1⊗v2として表せる元を
正方行列と見たとき、その行列式は必ず0である
(どの行も他の行のスカラー倍であるから)
・一方、任意の正方行列は
v1⊗v2+v3⊗v4+…のような和の形であらわせるので
V⊗Wの元である
・そして、正方行列の中には行列式が0でないものが存在する
・つまり、V⊗Wの元の中にはv1⊗v2として表せないものが存在する
ゆえに、写像fの像に入らない元が存在するので、前者ではない
(単射でないことの証明)
・a ・ (v ⊗ w) = (a ・ v) ⊗ w = v ⊗ (a ・ w) である(二重線形性より)
・いっぽう、(a・v、w)と(v、a・w)は、異なる元である
・つまり、異なる元を写像fで写した先が等しいから、fは単射でない
ここから何がいえるか
・デカルト積V×Wの次元は、テンソル積V⊗Wの次元より小さい
・しかもデカルト積V×Wの次元のfの像は、もとのV×Wの次元よりも小さい
陰関数定理が分かっていれば証明できるが、ここでは面倒なので省略する
946:132人目の素数さん
20/10/03 07:04:43.83 SmtMlBCP.net
(x1,x2,x3)∈R^3
(y1,y2,y3)∈R^3
とする
(x1,x2,x3,y1,y2,y3)∈R^3×R^3(=R^6) から
(z11,z12,z13,z21,z22,z23,z31、z32、z33)∈R^3⊗R^3(=R^9)への
写像fを以下のように定義する
z11 = x1 * y1
z12 = x1 * y2
z13 = x1 * y3
z21 = x2 * y1
z22 = x2 * y2
z23 = x2 * y3
z31 = x3 * y1
z32 = x3 * y2
z33 = x3 * y3
このとき、以下が云える
f(R^6)は、R^9の部分多様体であり、その次元はたかだか5(=6-1)
一般にR^n×R^m(=R^(n+m))から、R^n⊗R^m(=R^(n*m))への写像fを
上記と同様の形で定義した場合
f(R^(n+m))は、R^(n*m)の部分多様体であり、その次元はたかだかn+m-1である
947:132人目の素数さん
20/10/03 07:23:11.28 SmtMlBCP.net
>>830を、さらに一般化する
R^n_1×…×R^n_m(=R^(n_1+…+n_m))から、
R^n_1⊗ … ⊗R^n_m(=R^(n_1*…*n_m))への写像fを
z i(1)…i(m) = x1_i(1) * … * xm_i(m)
のような形で定義した場合
f(R^(n_1+…+n_m))は、R^(n_1*…*n_m)の部分多様体であり、
その次元はたかだか(n_1+…+n_m)-(m-1)である
948:ammonium nitrate
20/10/03 14:45:05.60 SmtMlBCP.net
このスレ、不要につき爆破します
💣💣💣💣💣💣💣💣
949:ammonium nitrate
20/10/03 14:45:59.18 SmtMlBCP.net
爆破!
💥💥💥💥💥💥💥💥
950:ammonium nitrate
20/10/03 14:50:04.14 SmtMlBCP.net
このスレ 廃止しました
🏴🏴🏴🏴🏴🏴🏴🏴
951:ammonium nitrate
20/10/03 14:51:14.44 SmtMlBCP.net
このスレ 廃止しました
🏴🏴🏴🏴🏴🏴🏴🏴
🏴🏴🏴🏴🏴🏴🏴🏴
🏴🏴🏴🏴🏴🏴🏴🏴
🏴🏴🏴🏴🏴🏴🏴🏴
🏴🏴🏴🏴🏴🏴🏴🏴
🏴🏴🏴🏴🏴🏴🏴🏴
🏴🏴🏴🏴🏴🏴🏴🏴
🏴🏴🏴🏴🏴🏴🏴🏴
952:ammonium nitrate
20/10/03 14:54:02.48 SmtMlBCP.net
昭和を代表する名曲w
URLリンク(www.youtube.com)
953:ammonium nitrate
20/10/03 14:57:10.21 SmtMlBCP.net
これが令和になると・・・こうなるw
URLリンク(www.youtube.com)
さすが21世紀!(違)
954:ammonium nitrate
20/10/03 15:59:52.37 SmtMlBCP.net
URLリンク(www.youtube.com)
衝撃波の雲が目に見えるってスゲェな
955:132人目の素数さん
20/10/03 16:51:53.06 LCj5Mg3b.net
|∞゜*。○゜。>>832-835
|´д`)…
|∞
|`)…ェモカトォモタ…
|∞ ェモッピ🍄モ時々
|д`) 過疎系ニュー速デ
с レスバ相手ノレスニ…
♆(و´∀`)ว💣💥💥💥
投ゲタリ。。。
💣ャ💥ャ💀ャ💩タペストリー
織リ上ゲタリシテタ。。。
。。。。。。
٩(ᐛ)(ᐖ)۶
ゥルトラッ!ソゥルッ!ツィンッ!👯
956:132人目の素人さん
20/10/03 16:54:58.00 LCj5Mg3b.net
ソックリダッピィィッ!
|=з ピッヒャァァァッ!
957:ammonium nitrate
20/10/03 17:14:07.86 SmtMlBCP.net
>>839
( ´∀`)人(´∀` )ナカーマ
958:132人目の素数さん
20/10/03 17:27:18.33 LCj5Mg3b.net
タダノ('A`)人('A`)ナカーマ
ナンティャャァ!
|∞
٩`)モット一体化…
|b
|=з ///ピャァァァッ///
959:現代数学の系譜 雑談
20/10/03 19:03:14.09 5JuF9jlR
960:.net
961:現代数学の系譜 雑談
20/10/03 19:04:28.67 5JuF9jlR.net
>>842
どうも
いらっしゃい
お元気そうでなによりです(^^
962:132人目の素数さん
20/10/03 19:18:14.86 SmtMlBCP.net
>>843
>>829-831 理解したかい?
963:132人目の素数さん
20/10/03 19:52:10.47 LCj5Mg3b.net
ぬしさま…
イツモイツモぉスルルェ汚シチャッテ
ゴメンナサィ…
∞ ∞
(*“)*‥))✨ペコリ(>>844)
964:132人目の素数さん
20/10/03 20:00:01.02 LCj5Mg3b.net
彡∞
リボン∞ズレタ~!
965:132人目の素数さん
20/10/03 20:41:26.00 SmtMlBCP.net
>>846
🐓に「様」つけるとか卑屈に謝るとか、キモチワルイ♀だな
966:132人目の素数さん
20/10/03 20:45:46.12 SmtMlBCP.net
数学の分からん🐓が不法にスレッドを占拠して
数学的に誤ったトンデモネタを書き散らかす
荒らし行為を行っている
謝るべきは🐓のほう
焼かれて食われちまえ チキン野郎
967:132人目の素数さん
20/10/03 20:53:12.23 SmtMlBCP.net
小澤徹 (おざわ とおる)
1961年11月生
1980年3月 早稲田大学 高等学院 卒業
1980年4月 早稲田大学 理工学部 物理学科 入学
1984年3月 早稲田大学 理工学部 物理学科 卒業 (応用物理学科 飯野理一・堤正義研究室)
ほう・・・
968:132人目の素数さん
20/10/03 21:12:14.82 LCj5Mg3b.net
|∞ ٩(>>848)💢
|д・᷅)… ( )ว
с ) u u
|=з
969:132人目の素数さん
20/10/03 21:16:04.07 LCj5Mg3b.net
メガ文字化ケシテル…ªªモズレテル…
。○
゜
970:現代数学の系譜 雑談
20/10/03 22:32:04.24 5JuF9jlR.net
>>852
ご遠慮なく
ここは、自由ですよ
おサルも放し飼いですよ
971:現代数学の系譜 雑談
20/10/04 08:16:58.31 f31A/48O.net
小澤徹 テンソル空間 メモ(これ結構良いね)
URLリンク(www.ozawa.phys.waseda.ac.jp)
小澤徹 (おざわ とおる)
III. 教育活動
4.数学小ネタ集 URLリンク(www.ozawa.phys.waseda.ac.jp)
URLリンク(www.ozawa.phys.waseda.ac.jp)
テンソル空間
平成 26 年 11 月
小澤 徹
P7
3.テンソル積の同型の構成
定理4 X とY をベクトル空間とする。夫々の基底を(ei; i ∈ I)及び(fj; j ∈ J)とし、添字集
合I とJ の直積集合I×J の生成するベクトル空間をF0(I×J)とする。各(x, y) ∈ X ×Y に対
し{i ∈ I; e*i(x) ≠ 0}及び{j ∈ J; f*j(y) ≠ 0}は有限であり、
一次結合Σ(i,j)∈I×J e*i(x)f*j(y)ι(x,y)
は F0(I × J) の元となる。付随する写像
B : X × Y ∋ (x, y) → B(x, y) =Σ(i,j)∈I×J e*i(x)f*j(y)ι(i,j) ∈ F0(I × J)
は双線型となる。
定理 2 に拠って B = T ◯ ρ なる T ∈ L(X ◯x Y ; F0(I × J)) が一意的に存在
する。このとき T は全単射とな�
972:� X ◯x Y と F0(I × J) との同型を与える。この対応は元毎には ξ =Σ(i,j)∈I×J cijei ◯x fj ∈ X ◯x Y ←→ α =(i,j)∈I×J cij ι(i,j) ∈ F0(I × J) で与えられる。 ここに I 及び J は夫々I 及び J の有限部分集合であり cij = (T(ξ))(i, j) = ev(i,j)(α)である。 (証明) T が同型である事を示せば充分である。 略 つづく
973:現代数学の系譜 雑談
20/10/04 08:17:23.16 f31A/48O.net
>>854
つづき
P1
1.集合の生成するベクトル空間
空でない集合 S 上の函数で有限な台をもつもの全体を F0(S) と表す:
F0(S) = {f : S → K; ♯Suppf < ∞}
ここに Suppf = {x ∈ S; f(x) ≠ 0} は f の台とする。各点毎の和とスカラー倍
(f + g)(x) = f(x) + g(x),
(af)(x) = af(x)
により F0(S) に和とスカラー倍が定義され F0(S) はベクトル空間を成す。
各 x ∈ S に対し
ιx(y)
:=1, y = x
:=0, y ∈ S \ {x}
として ιx ∈ F0(S) が定まる。
ι(x) = ιx と置くと写像 ι : S → F0(S) が定まり
ι(x) = ι(y) ⇔ιx = ιy ⇒ ιx(y) = ιy(y)=1 ⇒ x = y より
ι は単射となる。
各 x ∈ S に対し evx : F0(S) → K
が evx(f) = f(x) で定まる。
このとき任意の f ∈ F0(S) に対し
f =Σx∈S f(x)ιx =Σx∈S evx(f)ιx
が成立つ。ここに総和は Suppf の有限個の点を除いて零であり、Suppf 上では一つの項のみ
零でない値を取る事に注意する。
上の等式は F0(S) 内の線型変換としての恒等写像の分解
id =Σx∈S evx(・)ιx
を与えていると見做す事が出来る。
(引用終り)
以上
974:132人目の素数さん
20/10/04 08:41:29.36 mLeuvA76.net
>>854
>これ結構良いね
文章の意味、わかってる?
>X とY をベクトル空間とする。
>夫々の基底を(ei; i ∈ I)及び(fj; j ∈ J)とし
質問 (x, y) ∈ X ×Y としたときの
e*i(x)、 f*j(y)とは何?
もちろん、私はわかってるよ 大学の数学科なら必ず学ぶ、基本だから
でも、線形代数を大学で全く学んでない◆yH25M02vWFhP 君、わかってる?
975:132人目の素数さん
20/10/04 08:47:31.40 mLeuvA76.net
>>854
>これ結構良いね
文章の意味、ホントにわかってる?
>添字集合I とJ の直積集合I×J の生成するベクトル空間をF0(I×J)とする。
で、その前に、こういうのも出てくるね
君、全然引用してないけど
「積ベクトル空間 X × Y の生成するベクトル空間 F0(X×Y) を導入する:
F0(X×Y) = {f : X × Y → K; #Suppf < ∞}」
質問:F0(I×J)はF0(X×Y)と、どう違うのか分かってる?
(いわずもがなだが集合I×Jは有限集合で、集合X×Yは無限集合)
976:132人目の素数さん
20/10/04 09:01:33.73 mLeuvA76.net
>>854
>これ結構良いね
文章の意味、ホンっっっトにわかってる?
>定理 2 に拠って B = T ◯ ρ なる T ∈ L(X⊗Y ; F0(I × J)) が一意的に存在する。
>このとき T は全単射となり X⊗Y と F0(I × J) との同型を与える。
で、君、肝心のX⊗Yの定義に関する記述、全く引用してないよね
ちゃんと全部読んでる?
「積ベクトル空間 X × Y の生成するベクトル空間 F0(X×Y) を導入する:
F0(X×Y) = {f : X × Y → K; #Suppf < ∞}」
双線型写像であれば零を与える組を想定して
F0(X×Y)の部分集合M1, M2 を次で定義する:
M1 = {ι(ax+a’x’,y) - aι(x,y) - a’ι(x’,y) ∈ F0(X × Y ); x, x’ ∈ X, y ∈ Y, a, a’ ∈ K}
M2 = {ι(x,ay+a’y’) - aι(x,y) - a’ι(x,y’) ∈ F0(X × Y ); x ∈ X, y, y’ ∈ Y, a, a’ ∈ K}
M1 ∪ M2 の生成する F0(X × Y ) の部分空間を M とする:M = Span(M0 ∪ M1)
F0(X × Y ) を M で割った商ベクトル空間を Z とする:Z = F0(X × Y )/M」
X⊗Yは集合としては上記のZであるが、これがF0(I × J)と同型になること、わかってる?
定理4の証明、全部省略してるけど もしかして訳も分からず鵜呑み?
それダメだよ 馬鹿になるから
977:132人目の素数さん
20/10/04 09:12:36.39 mLeuvA76.net
◆yH25M02vWFhPが、過去の投稿で
「商による(テンソル積空間の)定義」
といってるのは、 >>858に書いた、F0(X × Y )/Mのことだね
(これ一見すると実にペダンティックだが、
要は異なる(x,y)について二重線形性による
同値関係を入れてるだけで、理屈が分れば屁
978:でもないが 工学部とかの「土人」にとっては、青銅器や鉄器の如き代物w) で、同じく◆yH25M02vWFhPが、過去の投稿で 「多次元配列」 といってるのは、>>857のF0(I×J) このくらいなら、工学部の「土人」でも分かる石器みたいなもん で、要は 「数学科の連中がもったいつけて定義してる青銅器やら鉄器みたいなもんは 実は工学部の土人が扱える石器と全然変わらんよ」 というのが定理4 あのさ、文章リンクするのはいいけど 「これ結構良いね」 とかほざくんなら、このくらいコメントつけろよ ガキの使いじゃないんだからさ ま、でも工学部の「土人」には無理か え?大学出てないから「土人」ですらない? おいおい、そもそも人間じゃないのかよ おまえ、俺たち人間に食われる野獣か?
979:132人目の素数さん
20/10/04 09:17:35.36 mLeuvA76.net
>>855
これ、大して意味ないね。常識だしw
有限台に限るのは、そもそも代数的な線型空間で
ベクトルの無限和なんて考えないから
で、また、どうせトンチンカン解釈してるんだろ
あんた肝心なポイント(定理2のくだり)引用しないで
こんなカスみたいなところドヤ顔で引用するから
馬脚を現すんだよ ま、こりゃ馬脚どころかトリ脚だなw
980:現代数学の系譜 雑談
20/10/04 11:43:51.62 f31A/48O.net
>>860
>有限台に限るのは、そもそも代数的な線型空間で
>ベクトルの無限和なんて考えないから
違うよ
また、おまえ”スベッタ”な~!w
w(^^;
URLリンク(ja.wikipedia.org)
ベクトル空間
(抜粋)
歴史
ベクトル空間の重要な発展がアンリ・ルベーグによる函数空間の構成によって起こり、後の1920年ごろにステファン・バナフとダフィット・ヒルベルトによって定式化された[10]。その当時、代数学と新しい研究分野であった函数解析学とが相互に影響し始め、 p-乗可積分函数の空間 Lp やヒルベルト空間などの重要な概念が生み出されることとなる[11]。そうして無限次元の場合をも含むベクトル空間の概念は堅く確立されたものとなり、多くの数学分野において用いられ始めた。
数ベクトル空間 Fn は、すでに示した基底によってその次元が n であることがわかる。多項式環 F[x](上述)の次元は可算無限(基底の一つは 1, x, x2, … で与えられる)であり、ある(有界または非有界な)区間上の函数全体の成す空間など、もっと一般の函数空間の次元は当然無限大になる[nb 4]。
981:132人目の素数さん
20/10/04 12:17:05.07 mLeuvA76.net
>>861
>>そもそも代数的な線型空間で
>>ベクトルの無限和なんて考えないから
>違うよ
>また、おまえ”スベッタ”な~!w
君さぁ、いい加減、学習しようよ
君のナイーブな直感で、
「おまえ、間違ったな! アイ・ハヴァ・ウィン!」
とわめいた事例は、一つの例外もなく全て君の負けだった
という厳然たる事実にさ
>多項式環 F[x]の次元は
>可算無限(基底の一つは 1, x, x2, … で与えられる)
そこで質問
形式的べき級数環を線型空間とみなした場合
その基底はいかなるものか示した上で
基底の全体集合の濃度についても答えよ
わ・ざ・わ・ざ、こう質問したのだから
多項式環を線型空間とみなした場合の基底
とは確実に違うことだけは気づいとけよ🐓
982:粋蕎
20/10/04 12:39:12.85 R1FgWeYZ.net
非学者論に負けず、他力本願。
279:現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/07/29(水) 10:33:40.69 ID:ruijdO0n
<転載> ”0.999...”について
0.99999……は1ではない その11
スレリンク(math板:119番)
まあ
983:、三流は三流らしく ちゃんと、 超一流や一流の人をベースに議論しなさいよ https://ja.wikipedia.org/wiki/0.999...#p-%E9%80%B2%E6%95%B0 0.999... テレンス・タオ "0.999…" は 1 に「無限に近い」。 イアン・スチュアートはこの解釈を、「0.999… は 1 よりも『ほんの少しだけ小さい』」という直観を厳密に正当化する「全く合理的な」方法として特徴づけた[23]。 ・超一流のテレンスタオがさ、” "0.999…" は 1 に「無限に近い」”という主張は、ちゃんと21世紀の数学の中で正当化できるという(ノンスタでね) (一流のイアン・スチュアートも、この解釈を、「0.999… は 1 よりも『ほんの少しだけ小さい』」という直観を厳密に正当化する「全く合理的な」方法として特徴づけた[23]という) ・勿論、スタンダードな "0.999…=1"もあり ・だからさ、三流さんたちは、両方ありを前提に議論しないとさw あなた方は、三流なんだからさ まあ、三流は三流らしく ちゃんと、 超一流や一流の人をベースに議論しなさいよ
984:粋蕎
20/10/04 12:43:37.56 R1FgWeYZ.net
非学者論に負けず、間違い指摘を細かい事と言って取り合う事から逃避
301:現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/07/31(金) 10:34:59.05 ID:Trt2z5f1
> 299
おっさん、細かいことは良いんだよ
20世紀に、ロビンソンがノンスタ(超準)を考えて
実数を拡張して、無限小と無限大を取り入れた
21世紀の現代数学では、無限小をきちんと数学として扱えるようになった
おっさんらの議論は、古いんだよ
URLリンク(ja.wikipedia.org)
超実数
(抜粋)
超実数(ちょうじっすう、英: hyperreal number)または超準実数(ちょうじゅんじっすう、英: nonstandard reals)と呼ばれる数の体系は無限大量や無限小量を扱う方法の一つである。
URLリンク(ja.wikipedia.org)
無限小
(抜粋)
無限小(むげんしょう、英: infinitesimal)は、測ることができないほど極めて小さい「もの」である。
連続の法則および無限小の数学的に厳密な定式化は、1961年にアブラハム・ロビンソンによって達成された
ウラジーミル・アーノルドは1990年に以下のように書いている:
Nowadays, when teaching analysis, it is not very popular to talk about infinitesimal quantities. Consequently present-day students are not fully in command of this language. Nevertheless, it is still necessary to have command of it.[4]
(訳: 今日では、解析学の授業において無限小量について述べることはあまり一般的ではない。その結果、当世の学生はこの言葉づかいに全く習熟していない。にも拘らず、未だにそれを扱うことが必要である)
985:粋蕎
20/10/04 12:45:05.53 R1FgWeYZ.net
非学者論に負けず、間違い指摘を興味が無い事と言って取り合う事から逃避
495:現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/24(月) 18:49:40.66 ID:rNo847jr
おっさん、スレ違いだよ
細かい話は、別スレでやってくれ
おれは興味ないんだよね、それ
それに、ここは、IUTスレだよ
なお、安達スレには、適当に殴り込み掛けるからね
悪しからずww(^^;
986:粋蕎
20/10/04 13:05:50.06 R1FgWeYZ.net
此れ等の所業からスレ主は訂正や詫びをする心に欠け自浄能力は絶無、また学習能力も自ら放棄。
此の様にして此のスレはコピペ千万により誤解・誤謬・誤引用・誤説の限りを尽くされていく…。
987:ammonium perchlorate
20/10/04 13:53
988::35.31 ID:mLeuvA76.net
989:ammonium perchlorate
20/10/04 13:54:08.99 mLeuvA76.net
爆破!
💥💥💥💥💥💥💥💥
990:ammonium perchlorate
20/10/04 13:54:52.55 mLeuvA76.net
このスレ 廃止な
🏴🏴🏴🏴🏴🏴🏴🏴
991:現代数学の系譜 雑談
20/10/04 15:27:36.37 f31A/48O.net
>>859
>過去の投稿で
>「商による(テンソル積空間の)定義」
>といってるのは、 >>858に書いた、F0(X × Y )/Mのことだね
仰る通りだ。デカルト積X × Y は、有限次元では直和と同じだな(下記wikipedia)
(因みに、>>861の有限次元に限る話も同じだろう。有限次元に限れば、議論がすっきりするってことよ(^^;)
なお、デカルト積 X × Y から、小澤徹 テンソル空間 URLリンク(www.ozawa.phys.waseda.ac.jp)
では、「定理4 X とY をベクトル空間とする。夫々の基底を(ei; i ∈ I)及び(fj; j ∈ J)とし」て取り出して、
F0(X ×Y )から、F0(X × Y )/M を作っている。それを示すために、わざわざ、検索で 小澤 徹を見つけたんだ(^^
(参考)
URLリンク(ja.wikipedia.org)
ベクトル空間
(抜粋)
7.2 直積と直和
詳細は「直積線型空間」および「加群の直和」を参照
I で添字付けられたベクトル空間の族 Vi(i ∈ I) の直積 ?i∈I Vi とは、I の各添字 i に対して Vi の元 vi を指定してできる順序組 (vii ∈ I 全体の成す集合に、加法とスカラー乗法を成分ごとの演算によって定める。 この構成の変種として、直和 ◯+i ∈ I Vi(あるいは余積 ?i ∈ I Vi)は先の順序組において有限個の例外を除く全ての成分が零ベクトルであるようなものだけを許して得られるものである。添字集合 I が有限ならばこの二つの構成は一致するが、そうでないならば違うものを与える
なお、小澤が読めりゃ下記はない
(>>766より)
自分で言ったこと覚えているか?
「行列式はテンソルです」(>>576)
「内積も、行列式同様、テンソルです」(>>593)
って、言ったよね
とろで、行列式は、外積代数の外冪を使って定義されるよ(>>722)
外積代数も、普遍性あり
テンソル代数も、普遍性あり
だったら、「行列式はテンソルです」というと
外積代数とテンソル代数とが、”一意な同型射を除いて一意的”(下記)ってなるよね
それは、おかしいよね(^^;
(∵ 外積代数とテンソル代数とは、全く同型じゃない。例えば、田丸>>716 数学概論PDF 第 1 章 テンソル代数 と 第 2 章 外積代数 ご参照 )
992:132人目の素数さん
20/10/04 16:06:55.67 mLeuvA76.net
>>870
F0(X×Y)とX×Yは、集合としても全然異なるけど、わかってる?
さて、
>外積代数も、普遍性あり
然り X×Y の反対称的な二重線形写像から 外積代数が一意的に定まる
>テンソル代数も、普遍性あり
然り X×Y の二重線型写像から テンソル代数が一意的に定まる
>だったら、「行列式はテンソルです」というと
>外積代数とテンソル代数とが、
>”一意な同型射を除いて一意的”
>ってなるよね
然り
>それは、おかしいよね
何が?貴様のアタマがオカシイよねw
どこにも外積代数=テンソル代数なんて書いてないぞ
おまえ、何をどう読んだら、そういうトンデモ発言が口から出てくるんだ?
993:現代数学の系譜 雑談
20/10/04 17:22:03.61 f31A/48O.net
>>871
ぐだぐだ言い訳
話題そらしは、聞き飽きた
(>>766より)
自分で言ったこと覚えているか?
「行列式はテンソルです」(>>576)
「内積も、行列式同様、テンソルです」(>>593)
って、言ったよね
これ取り消せよ(^^
994:現代数学の系譜 雑談
20/10/04 17:30:59.89 f31A/48O.net
>>870 補足
”なお、デカルト積 X × Y から、小澤徹 テンソル空間 URLリンク(www.ozawa.phys.waseda.ac.jp)
では、「定理4 X とY をベクトル空間とする。夫々の基底を(ei; i ∈ I)及び(fj; j ∈ J)とし」て取り出して、
F0(X ×Y )から、F0(X × Y )/M を作っている。”
因みに、雪江明彦 代数学 2 P128のテンソル積の 定理2.10.3 の証明で
小澤では、F0(X ×Y )を使っているところで、雪江は 直和 「V=◯+ I k」を使っている
多分、趣旨は同じだと思う
集合の中で、余分な部分集合を除くところも同様です
筋は、同じと思われる(^^;
(個人的には、小澤の方が分り易い気がする(^^; )
995:132人目の素数さん
20/10/04 17:38:29.23 mLeuvA76.net
>>872
何の言い訳もない
君の読解が誤解なだけ
>「行列式はテンソルです」
>「内積も、行列式同様、テンソルです」
>これ取り消せよ
なぜ?
正しいことを撤回する必要はない
・行列式は多重線型形式
・内積も多重線型形式
したがってど
996:ちらも(共変)テンソル 逆に◆yH25M02vWFhPクンに云っておこう もし君が 「いかなるテンソルも、2つ以上のベクトルのテンソル積である」 と思っているなら、それは全くの誤解であるから 即刻改められたい いかなるテンソルも、基底のテンソル積の「和」として表せる しかしあくまでテンソル積の「和」であって、テンソル積ではない つまりV⊗Wの元のうち、V×Wの二重線形写像の像、つまり 個別のベクトルのテンソル積、として表せるのは、ほんの一部である
997:132人目の素数さん
20/10/04 17:44:25.87 mLeuvA76.net
>>873
>小澤では、F0(X ×Y )を使っているところで、
>雪江は 直和 「V=⊕ I k」を使っている
おそらく、対応が間違ってる
直和 「V=⊕ I k」に対応するのはX×Yだろう
>集合の中で、余分な部分集合を除くところ
◆yH25M02vWFhPクンは、しばしば、この言い回しを用いるが
いったい何を「余分な部分集合」といっているのか、全く明らかにされていない
おそらく、最も根本的かつ重大な誤解が、ここにあると思われる
祭りはまだまだ続きそうだ やれやれ
998:132人目の素数さん
20/10/04 18:07:14.43 mLeuvA76.net
>>875
◆yH25M02vWFhPクンの誤解の根は
>>812のこの発言かもしれん
「テンソル積の空間は、V × W(デカルト積)全体ではなく、
二つのベクトル v∈V、w∈W のテンソル積 v ⊗ w から成るものに制限される」
■第一の誤解
「VとWのテンソル積V⊗Wを
”二つのベクトル v∈V、w∈W のテンソル積 v ⊗ w から成る集合”
と思っている」
実は全然違う
””二つのベクトル v∈V、w∈W のテンソル積 v ⊗ w から成る集合”
は、(v,w)∈V×Wからテンソル積T:V×W→V⊗Wで写した像T(V×W)
であって、V⊗Wそのものではない
■第二の誤解
「V×Wが線型空間でその次元がdimV×dimWだ」
と思っている
これも全然違う
V×Wそのものは只の集合で、線型空間ではない
線型空間の構造を入れることはできるが、
それは直和V⊕Wであって、その次元はdimV+dimWである
(ちなみにこの場合の基底は
Vの基底をe_i、Wの基底をf_jで表せば
(e_i,0)および(0,f_j)となる)
だいたい、V,Wのパラメータの数がそれぞれdimV,dimWで
(v,w)∈V×Wなのだから、全体のパラメータの数はせいぜい
和にしかなりようがないのは、直感的に明らかである
■第三の誤解
「テンソルとは
”二つのベクトル v∈V、w∈W のテンソル積 v ⊗ w から成る集合”
の要素である」
これこそ全然違うw
実はテンソルとは
”二つのベクトル v∈V、w∈W のテンソル積 v ⊗ w の全体を包含する線型空間V⊗W”
の要素である
テンソル空間V⊗Wの基底はe_i⊗f_jであって、
テンソルt∈V⊗Wは上記基底の線型結合となる
しかし、一般にv⊗wの形では表せない
(v⊗wの形のものもテンソルであるが、
テンソルの中のほんの一部にすぎない)
999:132人目の素数さん
20/10/04 18:34:18.68 eb9Bl6F5.net
純粋と応用の区別って数学的にどう定義できるの?
1000:現代数学の系譜 雑談
20/10/04 18:59:09.45 f31A/48O.net
>>877
数学の応用と純粋との区別は、時代によって変わるから
厳密な定義は、難しいだろうな
確率論って知っている?
確率論の純粋数学と応用数学の切り分けみたいなものじゃないかな?
とくに、旧来純粋数学と言われた理論が
結構、数学以外の分野で、応用されるってある
例:圏論
1001:132人目の素数さん
20/10/04 19:06:51.48 mLeuvA76.net
>>877
腹話術?
1002:現代数学の系譜 雑談
20/10/04 21:36:48.61 f31A/48O.net
>>828 補足
見本PDFは、フリーだが、下記、結構いいよ(^^;
URLリンク(www.morikita.co.jp)
森北出版 見本PDF
ベクトル空間からはじめる抽象代数入門 2017
群・体・テンソルまで
学習院大学名誉教授理博飯高茂(監修) 津山工業高等専門学校教授理博松田修(著)
第9章 テンソル積とテンソル空間
P177-178 のテンソル積の普遍性 ここのP178の図と説明が良いね
1003:圏論っぽいので、圏論知っている人は分かりやすいかも(^^;
1004:現代数学の系譜 雑談
20/10/04 21:37:23.25 f31A/48O.net
>>879
他人だな
1005:132人目の素数さん
20/10/04 22:11:41.91 mLeuvA76.net
>>880
>>876 読んで理解したかい?
>>881
ウソツキのいうことは信用できんね
1006:現代数学の系譜 雑談
20/10/04 23:01:46.52 f31A/48O.net
ぐだぐだ言い訳
話題そらしは、聞き飽きた
(>>766より)
自分で言ったこと覚えているか?
「行列式はテンソルです」(>>576)
「内積も、行列式同様、テンソルです」(>>593)
って、言ったよね
これ取り消せよ(^^
1007:粋蕎
20/10/04 23:16:03.33 R1FgWeYZ.net
>>883
スカラー積と内積と0次テンソル積の違いを述べよ。
1008:現代数学の系譜 雑談
20/10/04 23:17:38.92 f31A/48O.net
>>855
小澤の補足
♯記号は、集合の濃度だろうね
”id =Σx∈S evx(・)ιx”
の”・”は
下記みたいな任意のfってことでしょうね
圏論のHom(A,?)の”?”みたいな
ここら、説明がない
(参考)
URLリンク(ja.wikipedia.org)
数学記号の表
(抜粋)
f: ● → ● 写像 「f: S → T」は、f が S から T への写像であることを示す。
Im,Image, ● [● ] 像 写像 φ に対して、Image φ はその写像の像全体の集合(値域)を表す。写像 φ : X→ Yに対して φ [X]とも書く。
URLリンク(ja.wikipedia.org)
Hom函手
定義
Hom(A,?) : C → 集合 Hom(?,B) : C → 集合
1009:132人目の素数さん
20/10/05 00:41:34.78 +Ac3xexk.net
瀬田くんはなに発狂してんの?
>>883は>>872とまったく同じ。
しかも>>872はきちんと反論されてるんだからそれを踏まえて発言しないとダメでしょ。
この失態、発狂じゃなきゃ何なの?
1010:132人目の素数さん
20/10/05 06:02:51.12 U/E15xVp.net
>>886
ま、無知無能なシロウトは猛り狂うしかないんだろう やらせとけよ
「行列式はテンソルじゃない!」「内積もテンソルじゃない!」
とトンデモ発言をくりかえして、数学科出身者に馬鹿にされ嘲笑され
大恥かくのは◆yH25M02vWFhP本人だからさ
ほんと、某国立大工学部卒とかいってるけどありえないって
いくら工学部卒でも「任意の正方行列に逆行列が存在する」とか
「V×Wの次元はdimV×dimW」なんて馬鹿なこといわないよ
もう線型代数に関するだけで3つはトンデモ発言してるからね
大学で線型代数を学んだことが全くないのは明らか
◆yH25M02vWFhPの誤りは>>876で書いた通りだろう
行列式も内積も多重線型写像であることはさすがに認めざるをえない
ようだから、それでもなお「テンソルじゃない!」とつっぱるのは
「ベクトルのテンソル積であらわせないから」ということなんだろう
「テンソルとはベクトルのテンソル積であるもの、そのものに限る」
とか粋がってるんだろうけど・・・全然違うから! 残念!!!
1011:132人目の素数さん
20/10/05 06:03:33.85 U/E15xVp.net
パチパチパチ👏
1012:現代数学の系譜 雑談
20/10/05 07:41:18.60 zIJTDBy/.net
>>886
ふふ
ぐだぐだ言い訳
話題そらしは、聞き飽きた
(>>766より)
自分で言ったこと覚えているか?
「行列式はテンソルです」(>>576)
「内積も、行列式同様、テンソルです」(>>593)
って、言ったよね
これ取り消せよ(^^
「行列式はテンソルです」(>>576)
「内積も、行列式同様、テンソルです」(>>593)
って、言った数学者皆無
数学テキスト及び論文皆無
この状況下で
アホと無益な論争、時間の無駄
スレ余白の浪費じゃね?w(^^;
1013:現代数学の系譜 雑談
20/10/05 07:44:04.88 zIJTDBy/.net
>>884
>スカラー積と内積と0次テンソル積の違いを述べよ。
0次テンソル積を使って
「行列式はテンソルです」(>>576)
「内積も、行列式同様、テンソルです」(>>593)
が説明できると思うなら
やってみなよ
多分、大勢からツッコミある気がするな
勿論、おれもツッコミの一人だろうがね
1014:132人目の素数さん
20/10/05 10:09:49.33 +Ac3xexk.net
>>889
>この状況下で
>アホと無益な論争、時間の無駄
>スレ余白の浪費じゃね?w(^^;
箱入り無数目に続きまたも棄権負けですな
1015:132人目の素数さん
20/10/05 18:57:07.93 U/E15xVp.net
>>889
>これ取り消せよ
( ゚Д゚)ハァ? この🐓アタマがなにほざいてんだ?
>>876に一言も反論できねぇんだろ?だったら黙ってろ!
フライドチキンにして食っちまうぞ!!!
1016:132人目の素数さん
20/10/05 19:00:28.00 U/E15xVp.net
あぁぁぁぁ、フライドチキン、食いてぇぇぇぇ!!!
URLリンク(www.youtube.com)
1017:現代数学の系譜 雑談
20/10/06 11:40:02.98 Ssv0gYrv.net
(>>766より)
自分で言ったこと覚えているか?
「行列式はテンソルです」(>>576)
「内積も、行列式同様、テンソルです」(>>593)
って、言ったよね
「内積も、行列式同様、テンソルです」って、何ですか?
数学に、こういう文学的、あるいは詩的な表現は、相応しくない
数学的に、何を言っているのか?
意味が分からない
統合失調症の薬の飲み忘れとしか思えない
(参考)
URLリンク(ja.wikipedia.org)
内積
内積(ないせき、英: inner product)は、(実または複素)ベクトル空間上で定義される非退化かつ正定値のエルミート半双線型形式(実係数の場合には対称双線型形式)のことである。二つのベクトルに対してある数(スカラー)を定める二項演算であるためスカラー積(スカラーせき、英: scalar product)ともいう。
注意
文献によっては、エルミート内積および半双線型形式は第二引数に関して線型、従って第一引数に関して共軛線型とするもの(特に物理学や行列環に関するもの)と、それとは逆に第一引数に関して線型、第二引数に関して共軛線型とするものがある。
関連のある積について
上記の内積と外積に対して、混同するべきではないがよく似た積として内部積(英語版) (interior) と外(部)積 (exterior) というのが、ベクトル場や微分形式に対する、あるいはより一般に外積代数における演算として定義される。さらにややこしいことに、幾何代数(英語版)において、内積 (inner) と(グラスマン)外積 (exterior) は幾何積(クリフォード線型環におけるクリフォード積)に統合される(内積は二つのベクトル (1-階ベクトル) をスカラー (0-階ベクトル) へ写し、外積は二つのベクトルを二重ベクトル (2-階ベクトル) へ写す)。そしてこの文脈においてグラスマン積はふつうは「外積」(outer)(あるいはウェッジ積)と呼ばれ、またこの文脈での内積は(考える二次形式が必ずしも正定値であることを要求されないという意味では「内積」でないので)スカラー積と呼ぶのが形式上はより適切である。
つづく
1018:現代数学の系譜 雑談
20/10/06 11:40:46.40 Ssv0gYrv.net
>>894
つづき
URLリンク(ja.wikipedia.org)
クリフォード代数
上で記述されたようなクリフォード代数はつねに存在し次のように構成できる: V を含む最も一般的な代数、すなわちテンソル代数 T(V) で始め、それから適切な商を取ることによって基本関係式が成り立つようにする。
関係を見るより洗練された方法は C?(V, Q) 上フィルトレーション(英語版)を構成することである。テンソル代数 T(V) は自然なフィルトレーションを持つことを思い出そう: F0 ⊂ F1 ⊂ F2 ⊂ ?、ただし Fk は k-階以下のテンソルの和を含む。これをクリフォード代数に射影することで C?(V, Q) 上のフィルトレーションが得られる。
反自己同型写像
自己同型 α に加えて、クリフォード代数の解析において重要な役割を果たす 2 つの反自己同型(英語版)が存在する。テンソル代数 T(V) はすべての積の順序を逆にする反自己同型とともに来ることを思い出そう:
URLリンク(www.ozawa.phys.waseda.ac.jp)
テンソル空間
平成 26 年 11 月
小澤 徹
P6
定理3 ベクトル空間 X 及び Y の基底を夫々(ei; i ∈ I) 及び (fj ; j ∈ J) とすると
(ρ(ei, fj ); (i, j) ∈ I × J) は X 〇x Y の基底を成す。X と Y 共に有限次元ならば X 〇x Y も有限
次元で dim(X 〇x Y ) = (dim X)(dim Y )=(I)(J) が成立つ。
(引用終り)
以上
1019:132人目の素数さん
20/10/06 15:30:18.40 ArpKO7AX.net
>>894
>数学的に、何を言っているのか?意味が分からない
何を云ってるのか意味がわからない、とすれば
君が日本語の文章を正しく読む力を有してないから
数学以前の国語の問題
いちいち論理的に説明してやろう
まず
1.テンソルを多重線型写像として定義する
つまり、
”テンソルとはスカラー値の多重線型形式で表せるもの
そのようなものに限る”
と書かれている
次に
2.内積も行列式も多重線型形式である
と示されている
したがって、1.および2.から三段論法により
3.内積も行列式もテンソルである
が導ける
つまり、論理的に明確な、何の曖昧さもない
味もそっけもない、散文的表現である
まさにポスト抜きのモダニズム
1020:132人目の素数さん
20/10/06 15:34:07.66 ArpKO7AX.net
>>895
>定理3
>ベクトル空間 X 及び Y の基底を夫々(ei; i ∈ I) 及び (fj ; j ∈ J) とすると
>(ρ(ei, fj ); (i, j) ∈ I × J) は X ⊗ Y の基底を成す。
>X と Y 共に有限次元ならば X ⊗ Y も有限次元で
>dim(X ⊗ Y ) = (dim X)(dim Y )=(I)(J) が成立つ。
で?
君は、まだ
「任意のt∈X⊗Yは、
それぞれあるx∈Xとy∈Yによって、
x⊗yとあらわすことができる」
と誤解してるのかね?
テンソル空間X⊗Yが
「x∈Xとy∈Yのテンソル積x⊗yの全体」
として定義できるなら、こんな簡単なことはない
し・か・し、どこにもそんな安直な定義はない
当然だ それでは、全然意味ないからだ
そもそも
「x∈Xとy∈Yのテンソル積x⊗yの全体」
は線型空間になり得ない
上記「」内の集合は
X、Yの基底同士のテンソル積全てを
要素として持つが、それらの和が、
テンソル積としてあらわせない場合がある
から、そのような場合、要素とならない
例えば
e1⊗f1+e2⊗f2
は、x⊗yの形では表せない
したがって、線型空間ではない
「違う!
基底同士のテンソル積のいかなる線型結合も
必ずx⊗yの形では表せる!」
と言い切るなら、今この場でやってみせろ!!!
できなければ、貴様を
「ホラ吹きトンデモ🐓野郎」
として、フライド🍗にして食ってやる
1021:現代数学の系譜 雑談
20/10/06 16:55:33.95 Ssv0gYrv.net
>>894-895 補足
> URLリンク(www.ozawa.phys.waseda.ac.jp)
>テンソル空間
>定理3
>次元で dim(X 〇x Y ) = (dim X)(dim Y )=(I)(J) が成立つ。
ここを補足する
ベクトルのテンソル積(下記、直積 (ベクトル))
座標ベクトル(英語版)のテンソル積をとった結果は行列になる
内積との対比 ”内積は外積のトレースに等しい。”
例えば、下記で、m = n = 3 で
座標ベクトル u=(u1,u2,u3),v=(v1,v2,v3)
として
内積 ?u, v? = u?v =u1v1+u2v2+u3v3
テンソル積u 〇x v
=(u1v1 u1v2 u1v3
u2v1 u2v2 u2v3
u3v1 u3v2 u3v3)
(注:3x3 の正方行列と思ってください)
二つの座標ベクトル u=(u1,u2,u3),v=(v1,v2,v3)で
内積 ?u, v? (スカラー)と、テンソル積u 〇x v (3x3の行列表現を持つ)とは、全く別物ですよ!!(^^;
以上
(参考)
URLリンク(ja.wikipedia.org)(%E3%83%99%E3%82%AF%E3%83%88%E3%83%AB)
直積 (ベクトル)
直積(ちょくせき、英: direct product[1])あるいは外積(がいせき、英: outer product)は典型的には二つのベクトルのテンソル積を言う。座標ベクトル(英語版)の外積をとった結果は行列になる。外積の名称は内積に対照するもので、内積はベクトルの対をスカラーにする。外積は、クロス積の意味で使われることもあるため、どちらの意味で使われているか注意が必要である。
内積との対比
m = n のときは別な仕方で行列の積を施してスカラー(1 × 1 行列)が得られる。つまり、数ベクトル空間の標準内積(点乗積)?u, v? = u?v である。内積は外積のトレースに等しい。
(引用終り)
以上
1022:現代数学の系譜 雑談
20/10/06 17:03:47.88 Ssv0gYrv.net
>>898 文字化け訂正
内積 ?u, v? = u?v =u1v1+u2v2+u3v3
↓
内積 (u, v) = uT v =u1v1+u2v2+u3v3
(注 uTは、ベクトルuの転置で、列ベクトルuを行ベクトルにした意)
内積 ?u, v? (スカラー)と、テンソル積u 〇x v (3x3の行列表現を持つ)とは、全く別物ですよ!!(^^;
↓
内積 (u, v) (スカラー)と、テンソル積u 〇x v (3x3の行列表現を持つ)とは、全く別物ですよ!!(^^;
まあ、原
1023:文 直積 (ベクトル)wikipediaを見てください(^^;
1024:ID:1lEWVa2s
20/10/06 17:29:20.14 ZUNhYOI4.net
体を満たさない可換環は環Kに置いて
(ab)c=a(bc)
ab≠ba
ab⇒形1
ba⇒形2
形1と形2は絶対的他を排除したラブラブな関係がある。
環Kが編み出す形があり
環Kの対偶はアーベル群である。
1025:ID:1lEWVa2s
20/10/06 17:34:53.71 ZUNhYOI4.net
環Kは(ab)c=a(bc)
が成り立たないらしい。
1026:132人目の素数さん
20/10/06 17:36:10.19 ArpKO7AX.net
>>898
>内積 |u, v| (スカラー)と、テンソル積u ⊗ v (3x3の行列表現を持つ)とは、
>全く別物ですよ!!
テンソル=テンソル積、ではないがな
テンソルの定義、読めよ
どこに
「テンソルとはベクトルのテンソル積であるもの、そのものに限る」
って書いてある?
書いてないよな?そりゃそうだ
ベクトルのテンソル積はテンソルだが、逆は真ではない!
1027:132人目の素数さん
20/10/06 17:42:46.62 ArpKO7AX.net
も・し
「内積も行列式も、”テンソル積”です」
といったなら、それは明らかに誤りだから、嘲笑されても当然
しかし、実際に書かれたのは
「内積も行列式も、”テンソル”です」
いかなるテンソルも、ベクトルのテンソル積であるというのなら
両者は同じことだが、実際は違う
何度も何度も何度も何度も書いているが
(そして一度も反応がないが)
「ベクトルのテンソル積で表せないテンソルがある」
「ベクトルのテンソル積の一次結合」で表せても
「ベクトルの単一のテンソル積」では表せない
どうも🐓はこの根本的な事実が全く理解できてない
(というか理解する気が毛頭ない)ようだ
そんな向学心のないヤツは数学に興味もつなよ
数学板に書くなよ 数学板読むなよ
意味ないだろ?
1028:132人目の素数さん
20/10/06 17:53:53.57 ArpKO7AX.net
内積も行列式も、
「反変テンソル空間からスカラーへの線型形式」
で表せるので
「共変テンソル」
である
そして、それは
(共変)基底ベクトルのテンソル積の一次結合
として、多次元配列で表せる
で、その
(共変)基底ベクトルのテンソル積の一次結合 が、
(共変)ベクトルのテンソル積 として表せるか
といえば、答えは否だ
で、さらに
(共変)ベクトルのテンソル積 として表せないから
(共変)テンソル ではない
といえるかといえば、これまた答えは否だ
つまり
(共変)テンソル とは
(共変)基底ベクトルのテンソル積の一次結合 であって
(共変)ベクトルのテンソル積 である必要はない
つまり、例えば、2階テンソルの場合、任意の
(t11 t12 t13
t21 t22 t23
t31 t32 t33)
がそうなるのであって
(u1v1 u1v2 u1v3
u2v1 u2v2 u2v3
u3v1 u3v2 u3v3)
と表せる必要はない!
1029:現代数学の系譜 雑談
20/10/06 18:16:53.64 Ssv0gYrv.net
>>900-901
ID:1lEWVa2sさん、レスありがとう(^^
>環Kは(ab)c=a(bc)
>が成り立たないらしい。
下記の”非結合的多元体”みたいな話かな
(参考)
URLリンク(ja.wikipedia.org)
多元体
目次
1 定義
2 結合的多元体
3 非結合的多元体
非結合的多元体
多元体において結合律の成立を課さずに、普通はより弱い結合性の条件(交代律や冪結合律など)を課したものを考えることもある。体上の多元環も参照。
実数体上で有限次元の可換単位的多元体は同型を除いてちょうど二つだけ存在する(それは実数体と複素数体で、いずれも結合的である)。
1030:現代数学の系譜 雑談
20/10/06 18:41:56.49 Ssv0gYrv.net
>>898 補足
『テンソル』とは?
(下記wikipedia)
「一つの原理として「『テンソル』とは単に任意のテンソル積空間の元である」と定めることはできるが、数学の文献では「テンソル」とは上記のように一つの空間 V とその双対から得られるテンソル積(テンソル空間)の元のために用いるのが普通である。」
まあ、なので
1.一つの原理として「『テンソル』とは単に任意のテンソル積空間の元である」と定めることはできる
2.数学の文献では「テンソル」とは上記のように一つの空間 V とその双対から得られるテンソル積(テンソル空間)の元のために用いるのが普通である。
となるな(^^;
(参考)
URLリンク(ja.wikipedia.org)
テンソル
(抜粋)
テンソル(英: tensor, 独: Tensor)とは、線形的な量または線形的な幾何概念を一般化したもので、基底を選べば、多次元の配列として表現できるようなものである。
いくつかのアプローチ
テンソルの定義・表示と取り扱いには、いくつかの同等な方法がある。実際にそれらが同じことを指していることを納得するには、多少の慣れが必要である。
古典的なアプローチではテンソルは多次元の配列で、階数0のスカラーや階数1のベクトル、階数2の行列などの階数nへの一般化を与えているものと見なされる。
「テンソルはテンソル空間の元のことなのだ」という標語を掲げることもできるだろうが、高階のテンソルに対して幾何的な解釈をどう与えるかという難しさもあって、成分表示によらないアプローチが支配的になったというわけではない。
テンソル積に基づく定義
普遍性を通じて定義できるベクトル空間のテンソル積の元としてテンソルを定義することによってなされる。この文脈では、(p, q)-型テンソルはベクトル空間のテンソル積の元
略
として定義される[2]。
テンソルは極めて一般に(例えば任意の環上の加群まで含めて)定義することができる。一つの原理として「『テンソル』とは単に任意のテンソル積空間の元である」と定めることはできるが、数学の文献では「テンソル」とは上記のように一つの空間 V とその双対から得られるテンソル積(テンソル空間)の元のために用いるのが普通である。
(引用終り)
以上
1031:現代数学の系譜 雑談
20/10/06 18:42:51.20 Ssv0gYrv.net
>>906 補足
無理しなくていい
分からねーやつには、分からねーんだからさw(^^;
1032:132人目の素数さん
20/10/06 19:19:37.63 ArpKO7AX.net
次スレ立てた
純粋・応用数学 5
スレリンク(math板)
礼は要らない
1033:132人目の素数さん
20/10/06 19:32:17.43 ArpKO7AX.net
>>906
>一つの原理として
>「『テンソル』とは単に任意のテンソル積空間の元である」
>と定めることはできる
意味、わかってないだろw
例えば
「ベクトル空間VとWのテンソル積V⊗W」とは
「v∈Vとw∈Wのテンソル積v⊗w全体からなる集合」ではない
馬鹿にも分かるようにいえば、
「Vの基底をe1~en、Wの基底をf1~fmとするとき、
そのn*m個のテンソル積、e1⊗f1~en⊗fmを基底とするベクトル空間」
である
分からない?
じゃ、数学板から出ていけ
馬鹿には無理だ 諦めろ
1034:現代数学の系譜 雑談
20/10/06 20:40:22.01 Bqw4JrwL.net
>>908
悪いが、おれは使わないよ
どうぞ、ご勝手に
1035:132人目の素数さん
20/10/06 20:47:50.18 ArpKO7AX.net
>>910
悪いが、貴様を人間とみとめない
シッシッw
1036:ID:1lEWVa2s
20/10/06 20:51:15.29 HM/0CWK5.net
京大OCW 再生リスト 雪江みてる。
1037:132人目の素数さん
20/10/06 21:12:58.10 ArpKO7AX.net
ロシア革命(ロシアかくめい)とは、
1917年にロシア帝国で起きた
2度の革命のことを指す名称である。
1038:132人目の素数さん
20/10/06 21:13:26.08 ArpKO7AX.net
広義には1905年のロシア第一革命も含めた長期の諸革命運動を意味する。