20/09/29 23:44:13.96 JfmTq990.net
外積代数も、普遍性あり
用語大混乱:「内積」(inner) 、「外積」(outer) 内部積(英語版) (interior) 、外(部)積 (exterior) 、外積代数、幾何代数(英語版)、スカラー積
いやはや、思い出してきました、なんか混乱させられた記憶が・・(^^
(参考)
URLリンク(ja.wikipedia.org)
外積代数
圏論の言葉で言えば、外積代数は普遍構成によって与えられる、ベクトル空間の圏上の函手の典型である。
2.4 普遍性
普遍性
外積代数の普遍性
URLリンク(ja.wikipedia.org)
内積
関連のある積について
「内積」(inner) という語は「外積」(outer) の反対という意味での名称だが、外積は(きっちり反対というよりは)もう少し広い状況で考えることができる。
上記の内積と外積に対して、混同するべきではないがよく似た積として内部積(英語版) (interior) と外(部)積 (exterior) というのが、ベクトル場や微分形式に対する、あるいはより一般に外積代数における演算として定義される。
さらにややこしいことに、幾何代数(英語版)において、内積 (inner) と(グラスマン)外積 (exterior) は幾何積(クリフォード線型環におけるクリフォード積)に統合される(内積は二つのベクトル (1-階ベクトル) をスカラー (0-階ベクトル) へ写し、外積は二つのベクトルを二重ベクトル (2-階ベクトル) へ写す)。そしてこの文脈においてグラスマン積はふつうは「外積」(outer)(あるいはウェッジ積)と呼ばれ、またこの文脈での内積は(考える二次形式が必ずしも正定値であることを要求されないという意味では「内積」でないので)スカラー積と呼ぶのが形式上はより適切である。